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With the development of information technology, the border of the cyberspace gets much 

broader and thus also exposes increasingly more vulnerabilities to attackers. Traditional 

mitigation-based defence strategies are challenging to cope with the current complicated 

situation. Security practitioners urgently need better tools to describe and modelling attacks 

for defense. 

The provenance graph seems like an ideal method for threat modelling with powerful se- 

mantic expression ability and attacks historic correlation ability. In this paper, we firstly 

introduce the basic concepts about system-level provenance graph and present a typical 

system architecture for provenance graph-based threat detection and investigation. A com- 

prehensive provenance graph-based threat detection system can be divided into three mod- 

ules: data collection module, data management module , and threat detection modules . Each module 

contains several components and involves different research problems. We systematically 

taxonomize and compare the existing algorithms and designs involved in them. Based on 

these comparisons, we identify the strategy of technology selection for real-world deploy- 

ment. We also provide insights and challenges about the existing work to guide future re- 

search in this area. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Threat detection in cyberspace is an arms race between ad-
versaries and defenders. In this arms race, attackers can al-
most always bypass existing detection mechanisms by dis-
covering new attack surfaces, while defenders are usually
tired of plugging various vulnerabilities ( Sym, 2020 ). Therefore,
it is necessary for security researchers and practitioners to
start rethinking about traditional mitigation techniques and
try to design more robust and general detection mechanisms
against not only the various existing attacks but also the previ-
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ously unseen ones. The Defense’s Advanced Research Projects
Agency (DARPA) has launched a four-year project called Trans-
parent Computing since 2015 ( Darpa, 2015 ), trying to find a
high-fidelity and visible method to abstract the interaction
between components in the opaque system. The researchers
found that the provenance graph may be a promising tool,
with a strong abstract expression ability and relatively high
efficiency. 

Now more and more research works ( Barre et al., 2019; Has-
san et al., 2019; Hossain et al., 2017; Ma et al., 2015; Milajerdi
et al., 2019a; 2019b; Xie et al., 2018; 2019 ) began to focus on de-
tection and response algorithms based on provenance graphs
and believe that provenance graph has the potential to be-
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Fig. 1 – A provenance graph sample 
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ome the next generation of more robust detection mecha- 
isms. As shown in the Fig. 1 , the provenance graph repre- 
ents the relationship between the control flow and data flow 

etween the subject (such as processes, threads, etc.) and the 
bject (such as files, registry, network sockets) in the system 

hrough a directed graph with timing. The provenance graph 

an link causal events in the system, regardless of the time be- 
ween the two events. All in all, utilizing provenance graphs 
or threat detection and investigation has the following ad- 
antages: 

• Provenance graphs altogether show system execution by 
representing them as interactions between system objects.
Such dependency is innate for all the execution trace. Un- 
structured log like Auditd ( aud, 2020.3 ) can also be trans- 
formed into provenance graph ( Gehani and Tariq, 2012 ). 

• Provenance graphs enable semantic-aware and robust de- 
tection. Compared to unstructured audit logs, provenance 
graphs with spatial and temporal information are more 
difficult to forge by attackers ( Han et al., 2018 ). Moreover,
provenance graphs provide richer semantic; thus security 
analysts can conduct more effective and thorough attack 
investigation. 

• Provenance graphs keep all the execution history. Ad- 
vanced persistent threat (APT) attacks ( APT, 2020 ) are long- 
running and stealthy attacks. To investigate such attacks,
analysts need to access and understand the whole attack 
history. Actually, system execution history is necessary for 
any intrusion to trace the entry point and understand the 
impact. 

To take advantage of the provenance graph, security re- 
earchers need to design and implement provenance graph- 
ased detection systems. A typical system can be divided into 
hree sub-modules: “data collection module” ( Section 4 ), “data 

anagement module” ( Section 5 ), and “threat detection mod- 
le” ( Section 6 ). 

The data collection module is the foundation of the detec- 
ion systems. It needs to be able to collect system-level prove- 
ance information efficiently and accurately. The data man- 
gement module acts as a bridge between the collector and 

etector. It is responsible for providing efficient and fast query 
nterfaces while storing massive amounts of data efficiently 
nd economically. The threat detection module needs to pro- 
ess large amounts of data and locate stealth malicious be- 
aviors with the lowest possible overhead and the shortest 

atency. 
To design such an ideal provenance graph-based detection 

nd investigation system, we should take the following four 
esearch questions into consideration: 

RQ1: How to reduce the size of the data storage as much as
ossible while maintaining the semantics? 

RQ2: How to balance the space efficiency of the provenance 
raph storage with the time efficiency of the query? 

RQ3: How to design an efficient and robust intrusion detec- 
ion algorithm and balance the true-positives and false posi- 
ives? 

RQ4: How to shorten the response time of detection and 

orensics as much as possible? 
The potential answers to RQ1 and RQ2 are discussed in §5 .

he potential answers to RQ3 and RQ4 are discussed in §6 . All
n all, this survey makes the following 

Contributions : 

• We present the first thorough survey for threat detection 

and investigation with provenance graphs. 
• We taxonomize various representative techniques used in 

existing papers and depict a typical architecture design of 
the provenance-based threat detection systems today in 

Section 2.2 . 
• We employ various performance indicators to systemat- 

ically compare dozens of existing detection systems in 

Section 6 . Based on the comparison, we identify the strat- 
egy of technology selection for real-world deployment in 

Section 7 . Moreover, we provide multiple insights and chal- 
lenges for future studies. 

The rest of the paper is organized as follows: Section 

ection 2 introduced the background knowledge of the 
ystem-level provenance graph, including several basic defi- 
itions, the typical design of a detection system, and brief re- 
earch history. Section Section 3 introduced related works and 

he scope of this survey. Section Sections 4, 5 , and 6 focused
n three sub-modules, respectively. Section Section 7 detailed 

escribed the advantages and disadvantages of different ap- 
roaches from several perspectives and provided multiple in- 
ights and challenges. Section Section 8 presented conclu- 
ions. 

. Background 

.1. Definition of system-level provenance graph 

ystem-level provenance graphs treat all system-level entities 
s vertices and all operations between entities as edges. The 
perations are collected by auditing tools and generate events 
tream with timestamps. The order of events affect seman- 
ics, and events are directed, which indicate the flow of data 
r control. Thus, provenance graphs have strong spatial and 

emporal properties. Such properties are called causality for 
rovenance graphs. Correspondingly, provenance graphs are 
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Table 1 – Common provenance events list. 

Sample graph Description 

Write File 

Read File 

Send Data 

Receive Data 

Create New Process 

Inter-process communication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also called causality graphs . A series of related basic definitions
are given as follows: 

Definition 1 Subjects and Objects . Subject refer to the entity
in the system that perform a operation to another entity that
is called object. Subject and objects are denoted by u and v
respectively. 

It is worth mentioning that subjects and objects are rela-
tive, a subject of one operation can be the object of another
event. Subjects can be processes, threads, etc. Moreover, Ob-
jects can be files, sockets, and so on. For different operation
systems, the types of subject and object could be different. For
example, Windows has unique registry objects and COM ob-
jects. However, it is not complicated to extend the provenance
graph with more types of subjects and objects. 

Definition 2. Events refer to the operations between entities
in the system. An event includes four main attributes: the
subject performing the operation, the object being operated,
the time when the event occurred, and the specific content
of the operation. Thus, a event can be denoted by a quad
< subject, ob ject , t ime, operat ion > (or < u, v, t, o > for short.)
Table 1 lists the most commonly used events. And it is rela-
tively easy for analysts to add more events. 

Definition 3. Provenance Graph is the collection of all sub-
jects, objects, and events, which can be denoted by G =
(S, O, E) , where S represent the collection of subjects, O rep-
resent the collection of objects, E represent the collection of
events. 

In provenance graphs, both subjects and objects are repre-
sented as nodes, while events are represented as edges. There
could be more than one edge between two nodes with differ-
ent time or operation. 

Definition 4. Causality Dependency. Two events e 1 =
(u 1 , v 1 , t 1 ) and e 2 = (u 2 , v 2 , t 2 ) have causality dependency, if
v 1 = u 2 ∧ t 1 < t 2 . 

Causality dependencies indicate the possible data and con-
trol flow between two events. However, two events are causal-
ity dependent does not necessarily mean there are data or
control flow between them. Thus, compared to taint analysis
( Newsome and Song, 2005 ), the causality-based analysis will
introduce more false dependencies and cause more severe ex-
plosion problems. 

Definition 5. Backward Tracking. Starting from a single de-
tection point (e.g., a suspicious file), the backward tracking
process tries to find all nodes in the provenance graph that
causally affect the detection point. 

Definition 6. Forward Tracking. Starting from a single detec-
tion point, the forward tracking process tries to find all nodes
in the provenance graph that causally depend on the detec-
tion point. 

The backward and forward tracking is widely used together
in attack investigation to find the entry point and analysis the
impact of the attack. 

2.2. Typical design of provenance graph-based detection 

system 

In this section, we will introduce the composition of a typ-
ical provenance graph-based detection system. As Figure 2
shows, firstly, data collection modules should be installed
in the target hosts to collect operations between system
objects, which indicates provenance information. Coarse-
grained provenance ( Section 4.1 ) information can be obtained
with built-in auditing systems for most of today’s operation
systems, such as ETW ETW (2020.3 ) (Event Tracing for Win-
dows) and Linux auditing system ( aud, 2020.3 ). However, to
collect more fine-grained provenance ( Section 4.2 ), analyzer
needs to install extra infrastructure, such as common libraries
or hook into system calls. These fine-grained techniques have
much higher overhead, ranging from 2 × to 10 ×, and some-
times require support from vendors. The collected informa-
tion will be parsed into a stream of events defined by Def-
inition 3. The event stream will be transformed into a data
management module or directly to a stream-based detection
system. 

In the data management module, a filter will apply differ-
ent data reduction algorithm ( Section 5.2 ) to remove redun-
dant events according to different principles. Data reduction
for provenance graph can not only reduce storage space but
also reduce subsequent detection or investigation overhead.
The compressed data will be stored in databases, which is ap-
propriately designed to support frequent queries ( Section 5.3 )
and persistent access ( Section 5.1 ). 

The last and most important module is threat detection
modules ( Section 6 ). Intrusion detection based on provenance
graphs is not straight-forward. The most significant challenge
comes from the massive amount of data generated in real
time. A typical operating system will perform massive file read
and write and network connection operations, which brings a
lot of background noises. According to the survey results in
Xu et al. (2016) , for a typical bank with 20,000 hosts, about 70
PB of logs are generated annually. How to find out suspicious
events timely is also challenging. One mitigation strategy for
both challenges is to build a concise yet comprehensive model
incrementally with stream data input. 
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Fig. 2 – A general framework of provenance-based threat detection system. 
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.3. A brief history of the adoption of provenance graph 

n threat detection 

s shown in Fig. 3 , we studied dozens of research work and ob- 
erved two major technology trends. The first trend we find is 
he study of fine-grained provenance graph collection . The original 
ystem-level provenance graph is coarse-grained, which has 
ots of false dependence and thus leads to the “dependence 
xplosion” problem. Fine-grained data collection can funda- 
entally mitigate this problem, while the overhead is much 

igher. 
The second trend we find is the study of realtime threat detec- 

ion . The response time is critical to real-world security inves- 
igation. For example, a quick response can effectively avoid 

he same attack and reduce the loss. However, the investi- 
ations after building the complete provenance graph intro- 
uce a long delay to such responses. So far, researchers have 
een focusing on streaming graph-based detection that can 

erform real-time detection and investigation. 

. Related work and scope of this survey 

n this section, we present a holistic view of researches re- 
ated to system-level provenance graph-based threat detec- 
ion. Then, we define the scope of this survey and describe 
ur survey methodology. 

.1. Intrusion detection 

ntrusion detection ( Axelsson, 2000; Buczak and Guven, 2016; 
eresa F. Lunt, 1993 ) has been widely studied for sev- 
ral decades on different platforms, such as Host, cloud 

 Modi et al., 0000 ), Mobile platform, Cyber-Physical systems 
 Mitchell and Chen, 2014 ), etc. 

In general, intrusion detection approaches can be divided 

nto three categories: signature-based, anomaly-based, and 

ybrid. Signature-based approaches ( Edge and Falcone Sam- 
aio, 2009 ) are effective for detecting known attacks without 
any false-positives. However, lots of labor are required to 
aintain the signature database. Anomaly-based approaches 

 Hodge and Austin, 2004; Prasad et al., 2009; Yu, 2012 ) model 
he normal behavior and identify anomalies. They can not 
nly detect zero-day attacks but can also produce lots of 
alse-positives. Hybrid approaches combine multiple detec- 
ion techniques to improve accuracy. 

System-level provenance graph-based detection has a sim- 
lar taxonomy. However, it utilizes a brand new data source,
amely, system-level provenance graphs. Previous low-level 
ata sources, such as system calls and taint analysis, suf- 
er from high overhead and difficulty constructing seman- 
ic. In parallel, high-level data sources, such as system audits 
 aud, 2020.3 ), miss many behaviors and are easily bypassed.
he system-level provenance graphs are believed to have the 
ppropriate granularity. It can model all data flow and infor- 
ation flow in systems as graphs containing very rich seman- 

ic for intrusion detection. Moreover, it is relatively lightweight 
o be collected and analyzed in real-time. 

Furthermore, attack techniques have evolved, becoming 
ncreasingly stealthy and persistent. It is difficult to distin- 
uish malicious behavior based on single-point detection ac- 
urately. Correlation analysis ( Ficco, 2013; Husák and Kaš- 
ar, 2019 ) can combine multi-source information and detect 
tealth threats effectively without much false-positive. How- 
ver, most of the existing event-level correlation analyses rely 
n prior knowledge, therefore, hard to expand. Provenance 
raph-based detection supports correlation analysis naturally 
ith causality analysis, which can help improve detection ac- 

uracy. 

.2. Provenance 

ata provenance, also called data lineage, was initially intro- 
uced to find the origin of data in databases ( Buneman et al.,
001; Woodruff and Stonebraker, 1997 ). It provides a historical 
ecord of data and its origins. With the provenance informa- 
ion of data, we can obtain the validity and confidence of data.

Data provenances are widely adopted for multiple dif- 
erent purposes, such as reproducibility ( Greenwood et al.,
003; Miles et al., 2007 ), fault injection ( Naughton et al., 2009 ),
nd so on. Several surveys have also been done for different 
rovenance applications ( Freire et al., 2008; Herschel, 2017; 
immhan et al., 2005; Zafar et al., 2017 ). 

This survey focuses on system-level provenance informa- 
ion modeled as provenance graphs, which record the infor- 

ation flow between system-level objects in detail. Such in- 
ormation can be useful in locating potentially malicious be- 
avior, such as information leakages, etc. 

.3. Graphs for security purpose 

raph structures are widely utilized in cyber security because 
f their rich semantics and powerful representation. Different 
inds of graphs are extracted for different purpose according 
o their different properties. 
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Fig. 3 – A brief history of the adoption of provenance graph 

in threat detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, control flow graphs (CFGs) ( Petroni and Hicks,
2007; Venkatasubramanian et al., 2003 ) and abstract syntax
trees (ASTs) ( Li et al., 2019; Ndichu et al., 2019 ) can effectively
model the structure and behavior of programs and are there-
fore widely used for program analysis and malware detec-
tion. Besides, Bayesian attack graph ( Frigault and Wang, 2008;
Muñoz-González et al., 2016; Wu et al., 2012 ) can quantify the
risks and vulnerabilities in the system to measure the sys-
tem’s security. Petri net ( Xu and Nygard, 2006 ) is a well-known
operational model for formal analysis of control and compo-
sition of the distributed system. It can formally analyze the
security of the system with considerable overhead. 

However, none of the above approaches can effectively
model information flow between system-level objects with ac-
ceptable overhead, which is critical for system-level threat de-
tection. Therefore, in this paper, we focus on the system-level
provenance graph, which can not only track the information
flow but also support correlation analysis naturally. It is be-
lieved to be the next generation of detection technology. 

3.4. Survey methodology 

Multiple databases are used to conduct this survey. There are
many keywords relevant to our topic, including provenance,
causality, audit, logging, detection, forensic, investigation, apt,
reduction, collection, etc. However, these keywords are also
widely used in other fields. Thus, searching with a single key-
word does not work well. As a first step, we searched for sev-
eral sets of keywords on Google Scholar, including “prove-
nance + causality + collection”, “provenance + causality + re-
duction”, and “provenance + causality + detection”, which cor-
responded to three sub-modules in the typical design. 

Nevertheless, the first round of search with keywords com-
bination will miss lots of related works. Thus, we adopted a
knowledge graph tool for research papers, namely, Connected
Papers ( con, 2020.3 ). This tool is able to search related pa-
pers according to not only the citation tree but also the co-
citation and bibliographic coupling. It will construct a knowl-
edge graph for every input paper, with this basis, we are able
to find lots of related works. Finally, a number of articles are
located with snowball methods. 

4. Data collection module 

As the first step, security analyzers need to deploy collec-
tors on target hosts to collect provenance information. Gen-
erally, there are two kinds of collectors: The coarse-grained
collectors that focus on system-level information flow, such
as file reads, inter-process communication, and so on; and
fine-grained collectors that involve intra-process information
flow tracking. We will comparatively introduce the design and
mechanism of these two kinds of collectors in Section 4.1 and
Section 4.2 . 

4.1. Coarse-grained provenance collection 

Coarse-grained data collectors only track the provenance be-
tween system-level objects, also called system-level collec-
tors. The system-level provenance can be obtained from mul-
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Table 2 – Comparison of provenance data collection approaches. 

O/H Acc. Granularity 
Other 
Requirements 

System-level ( Gehani and Tariq, 
2012; Pasquier et al., 2017 ) 

Low Low Coarse None 

Execution Partition ( Lee et al., 
2013a; Ma et al., 2015; 2017; 2016; 
Yang et al., 2020 ) 

Low Mid Mid Instrumentation 

Causality Inference ( Hassan et al., 
2018; Kwon et al., 2016; 2018 ) 

Mid Mid Mid Training or 
Dual-Exectuion 

Taint Analysis ( Ji et al., 2017; 2018; 
Kemerlis et al., 2012 ) 

High High Fine Tainting 
Framework 

Multi-layer ( Hassan et al., 2020 ) Low Low Coarse Static Analysis 
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iple different sources. Most of today’s operating systems 
ave built-in audit system, which can provide necessary in- 

ormation flow among system-level objects. There are also 
hird-party collectors, such as FUSE ( fus, 2020 ). CamFlow 

 Pasquier et al., 2017 ) adopts LSM ( Schaufler, 2016 ) and Net-
ilter ( net, 2020 ) to hook kernel objects’ security data struc- 
ure on Linux. Ma et al. proposed ( Ma et al., 2015 ) to obtain
ystem event from windows built-in auditing system ETW 

 ETW, 2020.3 ). SPADE ( Gehani and Tariq, 2012 ) provides mul- 
iple collector modules for different systems, for example,
ooking system call through Auditd ( aud, 2020.3 ) on Linux and 

acFUSE ( OSX, 2020 ) on Mac OS, etc. 
For different operation system and audit tools, the event 

ist could be different. For Linux, all objects are abstracted 

s files. Table 1 shows the simplest provenance events list.
or windows, reading and writing to the registry is impor- 
ant. However, such extension is trivial and will not affect 
ater data management and detection too much. W3C Prov- 
M ( pro, 2020 ) provide more specific definition. In practice, se- 
urity analyzer should customize the events list to reach a bal- 
nce between overhead and functionality. 

.2. Fine-grained provenance collection 

ne common challenge for causality tracking with prove- 
ance graph is the ”Dependence Explosion” problem, which 

auses a large number of benign nodes marked as malicious 
nd brings a lot of computing overhead and human labor.
pecifically, for a provenance node with m input edges and 

 output edges, there could be as much as m × n possible in- 
ormation flows. Fine-grained provenance collectors can solve 
he ”Dependence Explosion” problem fundamentally by asso- 
iating inputs and outputs more accurately. Ideally, the num- 
er of information flow can be reduce to m + n . Thus, re- 
earchers proposed lots of approaches to collect fine-grained 

rovenance, as shown in Table 2 . 
Taint analysis that can accurately track information flow 

ithin processes are widely used to prevent information leak 
r zero-day attacks ( Clause et al., 2007; Enck et al., 2014; New- 
ome and Song, 2005; Xu et al., 2006 ). By combining inter- 
rocess provenance analysis and intra-process analysis, re- 
earchers ( Ji et al., 2017; 2018; Kemerlis et al., 2012 ) are able 
o accurately track the information flow. However, taint anal- 
sis introduces significant overhead, slowing down programs 
y 2 × to 10 × or more. 

Excessive overhead makes Taint infeasible for large-scale 
hreat detection. To reduce the overhead, Ma et al. (2015) first 
roposed execution partition-based approach. They figure out 
hat taint analysis, which tracking information flow between 

ariables, is too fine-grain and not necessary to build causal- 
ty connection between inputs and outputs. Thus, they try 
o find a middle ground between coarse-grain processes and 

ne-grain variables, called unit . Many later works ( Lee et al.,
013a; Ma et al., 2017; 2016; Yang et al., 2020 ) adopt a similar
dea. All these works make a different assumption about what 
ind of unit the causality should be maintained in. For exam- 
le, Ma et al. (2015) believes that processes can be split into 

any main loops, and each loop completes a task. Thus, the 
ausality relationship will only be built in the loop. However,
uch assumptions do not always hold, and these approaches 
ither need extra infrastructure or support from vendors. 

Besides improving the accuracy of information flow track- 
ng, causality inference can also effectively reduce false pos- 
tives. Kwon et al. proposed dual execution-based causality 
nference ( Kwon et al., 2016; 2018 ). By comparing the output 
uffer contents of the master and slave at the sink(s), they 
an determine if the sink(s) are causally dependent on the 
ource(s). Hassan et al. proposed Winnower ( Hassan et al.,
018 ) that tries to infer the connection by training a model to
uccinctly summarize the behavior of many nodes. 

After this module, the collected provenance information 

an be transmit directly to detection module ( Section 6 ) or 
hrough a data management module ( Section 5 ) first. 

. Data management module 

biquitously monitoring system in an organization or enter- 
rise will generate massive amount of data. An ideal data 
anagement module should consider how to reduce storage 

ost while providing effective query interface. In this section,
e introduce how to design such an ideal data management 
odule from 3 aspects: data storage models ( Section 5.1 ),

ata reduction algorithms ( Section 5.2 ), and query inter- 
ace ( Section 5.3 ), and try to answer two research questions,
amely, RQ1: How to reduce the size of the data storage as 
uch as possible while maintaining the semantics and RQ2: 
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How to balance the space efficiency of the prove-nance graph
storage with the time efficiency of the query? 

5.1. Data storage models 

The data storage model is the foundation of the whole data
management module. The data model used depends on sub-
sequent operations. We will systematically analyze the rela-
tionship between different detection algorithms and their cor-
responding data models in Section 6 . 

A straightforward idea is to store provenance graph with a
graph database. Graph database ( gra, 2020 ) is a widely used
NoSQL database, which stores all data as nodes and edges,
and provide semantic query interfaces with nodes and edges.
Thus, performing graph algorithms, such as backtracking and
graph alignment, is relatively easy. However, existing graph
database needs to load the whole graph database in the main
memory to enable queries. In a large organization, terabytes of
data needs to be loaded for a long-running attack campaigns.
Even though allocating such large memory is still possible,
such approaches incur significant I/O overhead. To mitigate
this challenge, the security researchers design detection algo-
rithms ( Han et al., 2020; Hossain et al., 2017; Milajerdi et al.,
2019a; 2019b ) that consume every event in the stream only
once, and adopt state stored in cache to represent the event
history. Corresponding to the cached graph stored in memory,
we call the input of such approaches as streaming graph . 

Vertex-centric database, built on relational database, store
all entries as < K, V > pairs, where K is a identifier represent-
ing vertexes (nodes) and V is a list of several entries, such as
parents nodes, child nodes, and rules ( Xie et al., 2018 ). Such
data model can easily count interaction between nodes, thus
widely used in abnormal analysis-based detection systems.
Furthermore, relational database can be stored in disk and ac-
celerated with in-memory cache, and thus more feasible than
graph database-based approaches. 

5.2. Data reduction algorithms for provenance graphs 

In recent years, more organizations, enterprises, and govern-
ment agencies suffered from advanced persistent threat (APT)
attacks [23-25]. These attacks often have multiple phases and
last for quite some time. Moreover, these attacks are often very
covert and difficult to detect. It has been reported that the
average duration of advanced persistent threat attacks lurk-
ing within an enterprise is as long as 188 days [26]. However,
the amount of data collected in the provenance graph is ex-
tremely large, and the amount of data for a single machine can
easily exceed 1GB in one day. Moreover, the number of hosts
in a large enterprise or organization can reach tens of thou-
sands. This thus brings significant data storage overhead. At
the same time, a massive amount of data also brings great dif-
ficulties to subsequent data backtracking. Therefore, the algo-
rithm for compressing the provenance graph is a subject that
researchers need to study. 

The provenance graph is a special graph whose data
mainly includes two parts: nodes (subjects and objects) and
edges (events). The essence of the compression of the prove-
nance graph is to remove as many unnecessary nodes and
edges as possible while maintaining as much semantics as
possible. Specifically, three questions need to be considered: 1)
How to define the semantics that needs to be maintained? 2)
What is the computational complexity of the compression al-
gorithm? 3) How effective is the compression algorithm? With
these three questions in mind, we discuss how to compress
nodes and edges, respectively. 

In this section, we mainly focus on data reduction meth-
ods, which refer to some data reduction principle with a guar-
antee of limited semantic loss. 

5.2.1. Data reduction for edges 
In a typical operating system, processes and file objects will
exist for a while and generate lots of operations between
them. Thus, the number of edges is much larger than that of
nodes in most provenance graphs, especially for long-running
systems. Data reduction algorithms for edges shall introduce
higher data reduction ratios than the algorithms for nodes. 

Data reduction approaches need to handle the trade-
off between data compression ratio and semantic reten-
tion. It is almost impossible to prune data without los-
ing any semantics. Thus, researchers should consider how
much semantics should be preserved after data reduction.
Causality-preserving reduction approach ( Xu et al., 2016 ) and
dependency-preserving reduction approach ( Hossain et al.,
2018 ) are proposed to define the loss. A simple and intuitive
definition of causality is that the first write to an object will
affect the subsequent readings. 

Causality-Preserving Reduction (CPR). As we discussed in
Section 1 , causality analysis is the most commonly used op-
eration in provenance graph. Xu et al. proposed causality-
preserving reduction ( Xu et al., 2016 ) that maintains the abil-
ity to causality analysis on provenance graphs. A simple and
intuitive definition of causality is that the first write to an
object will affect the subsequent readings. Thus, to avoid
changing the causality between objects, CPR will only remove
any repeated writes/reads between a pair of objects with no
read/write to the destination object. CPR can completely pre-
serve the topology of the graph, and ensure that most detec-
tion algorithms are still valid on the compressed graph. How-
ever, the algorithm will lose statistical information, including
the access frequency, etc. In real-world scenarios, analyzers
should pick reduction algorithms according to the subsequent
analysis. 

Full Dependence-Preserving Reduction (FDR) and Source
Dependence-Preserving Reduction (SDR). As Fig. 4 shows,
while CPR preserves the semantics in provenance graphs well,
it has limited data reduction ratio. To further compress the
provenance graph, Hossain et al. (2018) proposed dependence-
preserving data compaction. Dependence-preserving reduc-
tion only considers the basic operation on provenance graphs,
namely, backward tracking and forward tracking. FDR and
SDR rely on global reachability of provenance graphs, which
is much more expensive to compute than CPR. To overcome
these computational challenges, they proposed versioned de-
pendence graphs, which are widely used to simplify compu-
tation produce of provenance ( Chavan et al., 2015; noa, 2016 ). 

5.2.2. Data reduction for nodes 
Some techniques try compressing provenance logs via web
graph compression algorithm ( Chapman et al., 2008 ) or de-
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Fig. 4 – Data reduction algorithms for edges. 

Fig. 5 – Data reduction algorithms for nodes. 
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ecting common sub-graphs and compressing them ( Xie et al.,
012 ). The main problem of these techniques is that they 
nvolve expensive runtime overhead. However, system-level 
rovenance graphs expand quickly. Thus, light-weight com- 
ression algorithms are required. 

Towards designing efficient compression algorithms,
ee et al. (2013b) designed garbage collecting for provenance,
hich can locate isolated temporary nodes. Removing these 
odes will not affect causality in provenance graphs. Tang 
t al. proposed nodemerge ( Tang et al., 2018 ), which adopt en- 
anced FP-growth algorithm to find common access patterns 
uring program initialization. As Fig. 5 shows, the com- 
ression ratio of both algorithms is lower than edge-based 

eduction algorithm. 

.3. Query interface 

ost detection approaches tend to use naive database query 
nterfaces and fixed data structure to ensure universality.
owever, for customized attack investigation requirement,

he naive query interfaces may not be flexible enough. To fill 
his research gap, researchers proposed series of provenance 
raph query systems ( Gao et al., 2018a; 2018b; Pasquier et al.,
018; Shu et al., 2018 ). 

These query systems provide investigation capabilities 
hat naive databases cannot provide or require extra effect.
hese capabilities are list as following: 

Causality Tracking. Provenance graphs have strong spatial 
nd temporal properties, which is thus different from ordi- 
ary graphs. Backward and forward tracking should take these 
roperties, which are called causality, into consideration. Such 

racking operations are common tasks in forensic for root 
ause discovery and impact analysis ( King and Chen, 2003 ).
lmost all the query systems regard the causality tracking as 

heir basic function and provide convenient language or inter- 
ace support ( Gao et al., 2018b; Pasquier et al., 2018; Shu et al.,
018 ). 

Provenance Graph Pattern Matching. Graph pattern match- 
ng is at the core of graph query. For threat detection with 

rovenance graph, graph patterns can be used to represent 
ttack behaviors with rich semantics. Thus, pattern match- 
ng is equivalent to threat detection. Shu et al. (2018) points 
ut that an ideal pattern matching system should be able to 
reat patterns as values and compose larger patterns based on 
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others to enable pattern reuse and abstraction. To accomplish
such targets, Shu et al. adopt well-designed query language
and typing system. 

Stream-based Query. Threat detection is a time-critical
mission. To reduce the delay between the attack and the inves-
tigation and response, Gao proposed SAQL ( Gao et al., 2018a ),
which is able to take real-time event feed aggregated from
multiple hosts as input and provide rich interface. They built
the query engine on the top of Siddhi ( Sid, 2020 ) to leverage its
mature stream management engine. To tackle the scalability
challenge, they designed a master-dependent query scheme
that identifies compatible queries and groups them to use a
single copy. 

Anomaly Analysis. Security log auditing and threat de-
tection rely heavily on expert experience. In order to adopt
domain knowledge from expert to express anomalies, Gao
provides a domain-specific query language, SAQL ( Gao et al.,
2018a ), which allows analysts to express models for (1) rule-
based anomalies, (2) time-series anomalies, (3) invariant-
based anomalies, and (4) outlier-based anomalies. 

All in all, the query systems provide analysts with a thor-
ough attack investigation capability. These systems typically
build on mature stream processing system or database, but
take provenance graphs’ special properties into consideration
with specifically-designed data model and query language. 

6. Threat detection module 

Using the traceability diagram, security analysts can link
causal events and entities in the host to obtain a good ab-
straction ability, which can well describe the data flow and
control flow in the system. In order to connect multiple points
involved in an attack, the simplest method is to backtrack [22,
30]. However, the simple backtracking algorithm is difficult
to distinguish normal data flow from malicious control flow.
There is a problem of dependence explosion, so the accuracy
is very low. In order to solve this problem and provide a real-
time, efficient, and low false positive threat detection system,
researchers have proposed many different schemes. In this
section, we first give several threat models ( Section 6.1 ) com-
monly used in threat detection research using provenance
graphs. Then we give a comparison of the existing intrusion
detection systems and try to answer two of the research ques-
tions we summarize in Section 2.2 : RQ3: How to design an
efficient and robust intrusion detection algorithm and bal-
ance the true-positives and false positives? and RQ4: How to
shorten the response time of detection or traceability foren-
sics as much as possible? 

6.1. Attack models 

6.1.1. Multi-stage APT attack (APT) model 
A large part of threat detection using a provenance graph
aims at detecting advanced persistent threat (APT) attacks.
APT attacks have the characteristics of advancedness, com-
plexity, concealment, and persistence. Typical APT attacks can
be divided into multiple stages, as ATT&CK Metrics ( Mit, 2020 )
shows. Every stage has a particular target and a variety of dif-
ferent technologies to achieve the target. Real-world attacks
usually involve three or more stages. Thus, even if missing
some stages, security analyzers can still identify a threat and
complete the missing piece with digital forensic techniques.
Meanwhile, analyzers can also adopt the multi-stage feature
to filter out false alerts. 

6.1.2. Information leakage (leakage) model 
The information leakage model assumes that the attackers
are able to take control the entire target system. The goal is
to pass the specified sensitive information to endpoints con-
trolled by the attacker in various ways. A large part of APT
attacks is also aimed at information leakage. However, un-
like the multi-stage APT attack model, the information leak-
age model does not focus on specific attack technologies, but
focuses on the information flow in the system, and continu-
ously monitors whether sensitive information flows to unau-
thorized points. 

6.1.3. General attack (general) model 
General attacks are much more diverse. There are low and
stealth attacks like APT but also quick and overt attacks such
as ransomware. The target could be stealing information but
also pure destruction. Thus, more general and detailed attack
models are required to detect such attacks. 

6.2. Threat detection and investigation system design 

Provenance graphs are able to link events in system with
causality, regardless of the time between events, which thus
have a overall view of entire attacks. Backtracking, proposed
by King ( King and Chen, 2003 ), is the earliest and most fun-
damental attack investigation method on provenance graph.
Given a detection point, backtracking is able to traverse the
whole historical context of system execution. However, naive
backtracking requires complete provenance graph and too
much human intervention, which thus is neither timely nor
efficient. 

An ideal threat detection system needs to consider three
attributes at the same time: fast response, high efficiency, and
high accuracy. However, the size of a provenance graph, even
pruned, is very large. Therefore, threat detection on prove-
nance graphs could introduce high space and computing over-
head. In order to find a balance between the three attributes,
researchers have made many attempts. These approaches can
be divided into 3 categories according to the main detection
design. 

Firstly, tag propagation-based approaches ( Hossain et al., 2017;
Milajerdi et al., 2019a ) try to store system execution history
incrementally in tags and utilize tag propagation process to
trace the causality. These algorithms have roughly linear time
complexity. Moreover, they can take streaming graph as input
and respond fast. Secondly, abnormal detection ( Hassan et al.,
2019; Liu et al., 2018; Xie et al., 2018; 2019 ) try to identify abnor-
mal interaction between nodes. Thus, these approaches will
model normal behaviors by collecting historical data or data
from parallel systems. Finally, graph matching-based approaches
( Han et al., 2020; Liu et al., 2019; Milajerdi et al., 2019a ) try
to identify suspicious behavior by matching sub-structure in
graphs. However, graph matching is computational complex.
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Table 3 – Taxonomy of existing provenance graph-based threat detection system designs. 

Approaches 
Attack 
Models 

Detection 

Models 
Data 
Models 

Alert 
Detection 

Alert 
Correlration 

Response 
Time Overhead 

True 
Positive 

False 
Positive 

Back-tracking 
( King and 
Chen, 2003 ) 

General Naive 
Backtracking 

Cached 
Graph 

✗ 
√ 

Long Mid - High 

HERCULE ( Pei et al., 
2016 ) 

General Community 
Detection 

Cached 
Graph 

✗ 
√ 

Long Low - High 

POIROT 
( Milajerdi et al., 
2019a ) 

APT Graph 
Alignment 

Streaming 
Graph 

√ √ 

Short Mid Mid Low 

Log2vec ( Liu et al., 
2019 ) 

General Graph 
Embedding 

Cached 
Graph 

√ 

✗ Long Low Mid Mid 

ProvDetector 
( Wang et al., 2020 ) 

General Graph 
Embedding 

Cached 
Graph 

√ 

✗ Long Low Mid Mid 

UNICORN 

( Han et al., 2020 ) 
APT Graph Sketch 

Cluster 
Cached 
Graph 

√ 

✗ Mid Low High High 

PrioTracker 
( Liu et al., 2018 ) 

APT Anomaly 
Scores 

Cached 
Graph 

√ 

✗ Mid Low Mid Mid 

NoDoze 
Hassan et al. (2019) 

APT Anomaly 
Scores 

Vertex- 
centric 
DB 

√ 

✗ Mid Low Mid Mid 

P-gaussian 
( Xie et al., 2019 ) 

APT Anomaly 
Scores 

Vertex- 
centric 
DB 

√ 

✗ Mid Mid Mid Mid 

Pagoda ( Xie et al., 
2018 ) 

APT Anomaly 
Scores 

Vertex- 
centric 
DB 

√ 

✗ Mid Low Mid Mid 

SWIFT ( Ul Hassan 
et al., 2020 ) 

APT Anomaly 
Scores 

Vertex- 
centric 
DB 

√ 

✗ Mid Low Mid Mid 

Coloring ( Jiang et al., 
2006 ) 

General Process 
Coloring 

Cached 
Graph 

✗ 
√ 

Long Low - High 

SLEUTH 

( Hossain et al., 2017 ) 
Leakage Tag 

Propagation 
Streaming 
Graph 

√ 

✗ Short Mid High High 

HOLMES 
( Milajerdi et al., 
2019b ) 

APT Tag 
Propagation 

Streaming 
Graph 

√ √ 

Short Low Mid Low 

MORSE 
( Hossain et al., 2020 ) 

APT Tag 
Propagation 

Streaming 
Graph 

√ √ 

Short Low Mid Low 
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esearchers try to extract the graphs’ features with graph em- 
edding or graph sketch algorithm or use approximate meth- 
ds. 

As shown in Table 3 , the target attack models, fundamen- 
al detection algorithms, and data management model affect 
ach other and basically determine the design of the detection 

ystem. We will compare the system properties according to 
he ideal system properties introduced in Section 2.2 . 

.2.1. Graph matching-based detection 

he graph representation ensures the adversarially robust- 
ess of provenance graph-based detection approaches. The 
onnections between nodes indicate the relationship between 

ystem entities. Nodes close to each other are more likely to 
erve the same function. Thus, utilizing community detection 

lgorithm, analysts are able to correlate nodes in the same 
ttack scenarios. Substructures in a provenance graph can 

ompletely describe the malicious behavior. Therefore, it is a 
ery straightforward idea to detect by graph matching. How- 
ver, graph matching is NP-complete problem ( De Nardo et al.,
008 ). Thus, researchers have proposed many approximate 
ethods. 
Milajerdi et al. proposed POIROT ( Milajerdi et al., 2019a ) 

nd the key online graph alignment algorithm. Utilizing query 
raph manually extracted from threat intelligence and the 
raph alignment algorithm, they could locate threats in prove- 
ance graph quickly. However, extracting query graphs re- 
uires a lot of manual work. Thus, it is difficult to cover all
ind of advanced attacks in various forms. 

Graph embedding are widely used to extract graph fea- 
ures into vertexs while maximally preserving properties like 
raph structure and information ( Goyal and Ferrara, 2018; 
ang et al., 2014; Yan et al., 2006 ). Utilizing the graph embed-

ing, researchers can effectively and efficiently detect threats 
y separating malicious and benign log entries into different 
lusters and identifying malicious ones ( Liu et al., 2019; Wang 
t al., 2020 ). However, such methods typical work on cached 

raph, so the response is slower; meanwhile, it requires a lot 
f training data, so it is not suitable for advanced attacks. 

To tackle the above two challenges, Han et al. proposed 

NICORN ( Han et al., 2020 ), which adopts a historical graph 
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sketch approach to build an incrementally updatable, xed
size, longitudinal graph data structure. So, they can find
threats when the graph structure changed. However, this is
an anomaly detection-based approaches, which thus suffers
from the limitation of anomaly detection. 

6.2.2. Anomaly score-based detection 

Anomaly score-based detection tries to quantify the suspi-
ciousness of each edge between node pairs. Using histori-
cal statistics, researchers can find abnormal access in sys-
tem. Specifically, Pagoda ( Xie et al., 2018 ) takes into account
the anomaly degree of both a single provenance path and
the whole provenance graph. Their subsequence work P-
Gaussian ( Xie et al., 2019 ) can detect variants using gaussian
distribution scheme. PrioTracker ( Liu et al., 2018 ) and NoDoze
( Hassan et al., 2019 ) adjust the events’ suspiciousness based
on its nighber’s suspiciousness. 

Compared with graph-based anomaly detection, anomaly
score-based detection has much less parameters to tune,
which thus is much easier to implement and deploy. Mean-
while, anomaly score-based detection typically adopts a
vertex-centric relational database, which is much faster than
graph database. 

6.2.3. Tag propagation-based detection 

Tag propagation-based detection can be divided into two
phases, namely, tag initialization and tag propagation. In tag
initialization phase, tags are assigned to nodes. The amount
of nodes is much less than edges. Thus, storing and updat-
ing tags is efficient. In tag propagation phase, tags are passed
along the edge according to the pre-designed rules. In this
phase, different tags could meet at the same node and triage
future calculations together. 

Process coloring proposed by Jiang et al. (2006) is a simpli-
fied tag-based approach. In the tag initialization phase, tags
(colors) are assigned to each remotely-accessible server or pro-
cess. Then, in the tag propagation phase, tags can be inher-
ited by spawned child processes or diffused indirectly through
process actions. As a result, analysts can quickly identify the
break-in point without tedious backtracking. 

Follow-up works adopt more complex tag design to im-
plement more functions. SLEUTH ( Hossain et al., 2017 ) uti-
lizes two types of tags, namely, trustworthiness tags (t-tags)
and condentiality tags (c-tags), to implement a policy enforce-
ment framework. In short, an alarm is triggered when a node
with low trustworthiness accesses a node with high confi-
dentiality. Specifically, in the tag initialization phase, t-tags
and c-tags are assigned to the nodes according to the prede-
fined trustworthiness and confidentiality respectively. In the
tag propagation phase, the trustworthiness and confidential-
ity are propagated, and the accesses that violate the policy will
be captured. 

However, tag propagation-based approaches also suffer
from the ”dependency explosion” problem. Without extra con-
trol, single tag can spread to everywhere and cause a lot of
false positives. To tackle this challenge, Milajerdi et al. pro-
posed HOLMES ( Milajerdi et al., 2019b ), which raises the de-
tection threshold by requiring the aggregation of more tags.
In the tag initialization phase, HOLMES assigns fewer tags only
to process with suspicious behaviors. These suspicious behav-
iors contain lots of false positives. Thus, in the tag propagation
phase, HOLMES requires multiple tags to aggregate and reach
a pre-defined threshold, and then triage the alert. Another
way to avoid the dependency explosion problem is to make
the impact decrease as the number of transmission rounds
increases. MORSE ( Hossain et al., 2020 ) achieves this with tag
decay and tag attenuation techniques. 

All in all, tag propagation-based approaches have the fol-
lowing advantages. Firstly, tag initialization and propagation
processes replace computationally expensive graph matching
algorithm and lower the overhead. Secondly, tag propagation-
based approaches take one event at a time and update states
correspondingly, which thus can support streaming graph in-
put naturally and can respond quickly. Last but not least, the
information stored in tags can be used to locate the point in-
volved in the intrusion quickly, and thus avoid the tedious
backtracking algorithm. 

7. Discussion 

In this section, we discuss provenance-based threat detec-
tion as a whole from several essential perspectives. First, we
compare the effects of different combinations of the data
and detection model on the performance metrics. Then, we
will describe the prevailing dependence explosion problem
and possible solutions. Finally, we discuss how different ap-
proaches strike a balance between true-positive and false-
positive. Moreover, as summarized in Table 4 , multiple in-
sights and challenges will be provided for real-world practice
and future studies. 

7.1. How the selection of data models and detection 

models will affect performance? 

The detection model and the data model are two important
parts of the threat detection system, directly determining the
performance. As shown in Table 3 (Insight 1) there are three
frequent combinations of two models, namely, “anomaly
score + vertex-centric DB,” “tag propagation + Streaming
graph,” and “cached graph + others.”

Caching the data as graphs in the graph database is the
most intuitive and convenient way. Almost all detection mod-
els work on cached graphs. However, (Insight 2) it is an in-
efficient way because of the poor performance of the graph
database. Thus, the cached graph is not recommended in
practice. NoDoze et al. ( Hassan et al., 2019; Xie et al., 2018; 2019 )
proposed vertex-centric DB, which is essentially a relational
database, as an alternative. While adopting vertex-centric
makes access to nodes faster, it also makes access to edges
more complicated and slower. Thus, NoDoze et al. adopted
anomaly scores-based detection approaches that only need to
access nodes’ information. Sleuth et al. ( Hossain et al., 2017;
Milajerdi et al., 2019a; 2019b ) choose not to cache the prove-
nance graph. Instead, they process all nodes and edges once,
and cache processing results in tags. Moreover, they embed
the graph structure information in the tag propagation pro-
cess. By this means, (Insight 3) tag propagation-based detec-



12 c o m p u t e r s  &  s e c u r i t y  1 0 6  ( 2 0 2 1 )  1 0 2 2 8 2  

Table 4 – Insights and challenges on provenance graph- 
based threat detection. 

Insight 1 There are common combinations between the 
detection model and the data model, which enable 
optimal performance. 

Insight 2 The graph database has poor performance. Thus, 
the cached graph is not recommended in practice. 

Insight 3 Tag propagation-based detection can handle the 
provenance graph as a stream in real-time and thus 
have the shortest response time. 

Insight 4 The dependence explosion problem can be 
addressed fundamentally by adopting fine-grained 
data collection methods. 

Challenge 1 Existing fine-grained data collection methods 
involve significant overhead. How to build a low 

overhead fine-grained collector is still a pressing 
research problem. 

Insight 5 Existing approaches can only mitigate the 
dependence explosion problem and may involve 
potential vulnerabilities. 

Challenge 2 More efficient and robust algorithm-based solutions 
are still direly needed for the dependence explosion 
problem. 

Insight 6 For provenance graph-based detection, most 
existing detection models are sequence-based 
rather than graph-based. 

Challenge 3 Existing sequence-based real-time detection 
approaches may not be robust enough to distinguish 
malicious behavior from benign ones accurately. 
Therefore, it is still necessary to design and 
implement more robust detection models. 

Challenge 4 There is a lacking of unified datasets and data 
format for provenance graph-based detection. 

Challenge 5 There is a lacking of study on potential evasion for 
provenance graph-based detection. 
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ion can handle the provenance graph as a stream in real-time 
nd thus have the shortest response time. 

.2. How to solve the dependence explosion problem? 

s discussed in §6 , dependence explosion is a common prob- 
em caused by the coarse-grained provenance graph and 

ausality analysis, which will bring extra false-positive and 

verhead. Hence, (Insight 4) we can address the dependence 
xplosion problem fundamentally by adopting fine-grained 

ata collection methods, as discussed in Section 4.2 . (Chal- 
enge 1) However, these methods involve significant runtime 
r development overhead and, therefore, hard to be utilized 

n real-world scenarios. 
To mitigating the dependence explosion problem, several 

lgorithm-based approaches are proposed based on different 
ssumptions. Nodoze et al. ( Hassan et al., 2019; Xie et al., 2018 )
ssign anomaly scores to each edge based on the frequency 
ith which related events have happened before. Then, the 

nomaly score will be propagated along the paths. And paths 
ith low anomaly scores will be ignored. Their underlying as- 

umption is that an attack will always involve unusual edges 
n provenance graphs. However, such an assumption not al- 
ays holds. One real-world example is the gitpwnd attack 

 git, 2020 ), which completes the attack exclusively with the git 
orkflow. Attackers can intentionally avoid unusual depen- 
encies that trigger such detection. 

SLEUTH and subsequent works ( Hossain et al., 2017; 2020; 
ilajerdi et al., 2019b ) adopt tag decay based approaches.
hese works try to limit the spread of tags by limiting the 
umber of rounds or time of tag propagation. Their underly- 

ng assumption is that the attack will perform the attack as 
oon as possible. Nevertheless, apparently, attackers can by- 
ass such detection by maintaining stealth for a long time or 

nvolving more intermediate nodes to extend the attack chain.
All in all, (Insight 5) existing algorithm-based approaches 

an only mitigate the dependence explosion problem and 

ay involve potential vulnerabilities. Therefore, (Challenge 
) more efficient and robust algorithm-based solutions are 
till direly needed for the dependence explosion problem. One 
ossible solution is to determine the underlying information 

ow with high-level semantic information, as discussed in 

ection 4.2 . 

.3. How to balance the true-positive and false-positive? 

rue-positive and false-positive are the most critical and fun- 
amental indicators for a detection system. In general, com- 
licated detection models are better at distinguishing mali- 
ious and benign behavior and thus having higher accuracy.
or example, the multi-stage model utilized by provenance 
raph-based detection systems can improve accuracy by alert 
orrelation and perform better than the single-point detec- 
ion model. However, more complicated models tend to have 
igher overheads as well. 

Specifically, (Insight 6) for provenance graph-based de- 
ection, most existing detection models are sequence-based 

ather than graph-based , including tag propagation-based ap- 
roaches ( Hossain et al., 2017; 2020; Milajerdi et al., 2019a; 
019b ) and most anomaly detection approaches ( Hassan et al.,
019; Xie et al., 2018 ). While graph-based detection approaches 
 Han et al., 2020; Liu et al., 2019; Pei et al., 2016; Wang et al.,
020 ) typically have longer response times and higher over- 
ead. 

High true-positive and low false-positive are often con- 
radictory when adopting the same detection model. How- 
ver, security analyzers can still seek a balance between them 

hrough a combination of techniques and parameter tuning.
or example, HOLMES ( Milajerdi et al., 2019b ) utilizes relatively 
imple signatures to cover as many malicious behaviors as 
ossible. Meanwhile, it adopts the alert correlation to filter 
alse alarms. This process involves lots of parameters, whose 
uning significantly affects the accuracy and efficiency of sys- 
ems. Nevertheless, these parameters are often determined 

mpirically, which makes the detection results not stable. In 

omparison, POIROT ( Milajerdi et al., 2019a ) uses more sophis- 
icated signatures to avoid false-positive. To improve the cov- 
rage, they need to collect a signature database from massive 
eal-world threat intelligence. However, such an approach still 
annot detect previously unseen malicious behaviors. 

(Challenge 3) Existing sequence-based real-time detection 

pproaches may not be robust enough to distinguish mali- 
ious behavior from benign ones accurately. Therefore, it is 
till necessary to design and implement more robust detec- 
ion models. 
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7.4. Other practical challenges 

Challenge 4: Lacking of unified datasets and data format. Uni-
fied datasets and data format can significantly lower the bar-
riers for further research, reproduction, and quantitative com-
parison. However, as far as we know, the only publicly available
dataset for provenance graph-based detection is the Engage-
ment 3 and 5 datasets from the Transparent Computing pro-
gram ( Darpa, 2015 ). Most existing work has to rely on limited
self-collected attack data. These datasets only contain dozens
of attacks, which can hardly represent various sophisticated
attacks in the real-world. Thus, it is claimed that a unified
dataset and data format are direly needed. 

Challenge 5: Lacking of study on potential evasion. Anti-
evasion is a core competency for detection systems. Research
into the potential evasion problem is essential for new detec-
tion mechanisms, making the detection result more reliable.
However, such studies are still missing for system-level prove-
nance graph-based detection. 

7.5. An ideal detection approach 

Synthesizing the above discussion, we propose what an ideal
system should like: 

• A real-time approach: An ideal detection system should
have the lowest possible overhead and the shortest pos-
sible response time. Therefore, the system must be able
to process streaming provenance graphs without caching
too much data. From a performance perspective, tag
propagation-based approaches are the best. 

• A robust and effective approach: For a detection system,
robustness and effectiveness means that it needs to distin-
guish malicious behavior from benign ones accurately in
any case. That is to say, the detection model should be com-
plicated enough to demonstrate the difference between
malicious behavior from benign ones. From this point of
view, the graph-based modeling approach is better than
the others. 

Specifically, we can try to design and implement such a
system by answering the research questions mentioned in
Section 2.2 and the following the pace of existing work de-
tailed described in Sections 5 and 6 . 

8. Conclusion 

As a system behavior abstraction tool, provenance graphs are
widely accepted for endpoint threat detection. In this paper,
we present the typical system architecture for provenance
graph-based threat detection. Then, we systematically intro-
duced and compared techniques choice involved and con-
cluded existing research challenges for future study. 
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