






















Table 3: Name Component Statistics of Two Name Sets.
URL set # of names

# of total
components

average
component

length (Byte)

average # of
components

per name

original
size

(MB)

# of components
/edges in NPT

NPT size
(MB)

ENPT
size

(MB)

ENPT+Hash
Table size

(MB)

compression
ratio

10M
Name Set 9,834,747 24,808,603 7.35 2.52 182.26 12,228,081 236.57 48.91 116.02 63.66%

8M
Name Set 7,624,393 26,882,827 15.35 3.53 412.78 4,570,563 125.03 18.28 51.83 12.56%
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Figure 18: Largest numerical values of codes and PIT’s memory
consumption.

is 20.67 M components per second and 18.96 M components per
second for the 10M Name Set and 8M Name Set, respectively. Di-
vide them by the average number of components per name, we fur-
ther compute the encoding performance: 8.20 M names per second
and 5.37 M names per second for the 10M Name Set and 8M Name
Set, respectively. Therefore, the encoding performance is better than
the lookup performance and will not be the performance bottleneck.

6.2.4 Results of dynamic code
The drawback of assigning consistent codes to components has

been discussed in Section 4.5. To demonstrate the effects of dynamic
code, we replay the HTTP packets in the captured trace to mimic the
packet (name) incoming and outgoing process, which will lead to a
PIT of around 300 K (refer to Table 1) entries, and measure how
large the numerical value of the codes will be. For comparison, both
consistent and dynamic code method will be measured, as well as
the PIT’s actual memory consumption. The result is shown by Fig-
ure 18, the dotted curves represent the largest code of all the CASes,
which show that as times goes on, names keep coming and going,
the largest code increases. For consistent code, the largest keeps
increasing at a high rate after the PIT reaches 300 K valid entries,
thus the consumed memory of PIT increases as well. However, for
dynamic code, after the PIT reaches 300 K valid entries, the largest
code greatly slows down its increasing pace, making PIT’s mem-
ory consumption remains stable (solid curves). In fact, the largest
code by RULE 1 at each snapshot is the number of total components
observed by a CAS until this snapshot, while the largest code by
RULE 2 is the amount of components a CAS contains at each snap-
shot. The PIT’s memory consumption exhibits similar growth law
of the codes. The hash table size (not shown in Figure 18) is almost
the same for both consistent and dynamic code methods, since the
received names are the same, and thus the name components. The
hash table size is 33.55 MB (for the 8M URL Name Set). Therefore,
with NCE and dynamic code, PIT exhibits good scalability.

7. RELATED WORK
This section compares our NCE solution to our previous work

in [14], and we name it Original NCE. In fact, this paper only con-
tinues the encoding idea, but the ways to assign codes, lookup, in-
sert and delete are different. We conclude three major distinctions:
1) The data structure to implement the ENPT in Original NCE in-
volves complicated memory management, such as data movement,

fragment management; 2) Original NCE allocates consistent codes
to components and does not allow identical components be encoded
to different, dynamic codes, which fundamentally contradicts with
the code allocation function 𝑓 in this paper; 3) Original NCE only
achieves lookup speedup, but does not exhibit good support for in-
sert and delete operations. However, in this paper, NCE not only sig-
nificantly accelerates lookup, but also insert and delete operations.

8. CONCLUSION
NDN/CCN propose that PIT caches yet un-responded Interests,

when the responding Data packets return, the names are removed
from PIT. PIT brings significant features to NDN/CCN. However,
none has conducted a measurement study to show the size and ac-
cess requirements of PIT. Without these knowledge, we have no data
to support the design of NDN routers or the actual deployment of
NDN. In this paper, we are the first address three problems asso-
ciated with the PIT: 1) the size and access (lookup, insert, delete)
frequency of PIT; 2) how to address the large size and high access
frequency problem with a scalable solution; 3) where does PIT re-
side within a router.

We emulate NDN’s application-layer working paradigms by
transferring the existing IP applications to the NDN platform. By
mapping/translating a captured 20 Gbps gateway trace from IP to
NDN scenario at the application perspective, we quantify the size
and access frequency of PIT, which demands an efficient and scal-
able solution. Therefore, NCE is proposed to accelerate the access
throughput of PIT, as well as to reduce its size. Moreover, the dy-
namic code allocation technique makes the NCE solution practical,
and further keeps the actual memory consumption of PIT stable. At
last, we propose to place PIT on the packets’ outgoing line-cards
(egress channel) when actually implementing PIT, which meets the
PIT design in [15] and eliminates the cumbersome synchronization
problem among multiple PITs on line-cards.
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