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ABSTRACT

Drive-by download attacks, which exploit vulnerabilities of web
browsers to control client computers, have become a major venue
for attackers. To detect such attacks, researchers have proposed
many approaches such as anomaly-based [22, 23] and vulnerability-
based [44, 50] detections. However, anomaly-based approaches are
vulnerable to data pollution, and existing vulnerability-based ap-
proaches cannot accurately describe the vulnerability condition of
all the drive-by download attacks.

In this paper, we propose a vulnerability-based approach, namely
JShield, which uses novel opcode vulnerability signature, a deter-
ministic finite automaton (DFA) with a variable pool at opcode
level, to match drive-by download vulnerabilities. We investigate
all the JavaScript engine vulnerabilities of web browsers from 2009
to 2014, as well as those of portable document files (PDF) readers
from 2007 to 2014. JShield is able to match all of those vulnera-
bilities; furthermore, the overall evaluation shows that JShield is so
lightweight that it only adds 2.39 percent of overhead to original
execution as the median among top 500 Alexa web sites.

1. INTRODUCTION
In the past few years, drive-by download attacks exploiting browser

vulnerabilities have become a major venue for attackers to control
benign computers including those of reputable companies. For ex-
ample, in February 2013, both Facebook and Apple confirm being
hit in “watering hole attack” [4], a variance of drive-by download
attack. In such an attack, the attacker compromises a web site com-
monly visited by victims, injects drive-by download attacks, and
then waits for victims to come, just as a predator sitting at a water
hole in a desert for prey.

To defeat these severe attacks, many anomaly-based approaches [21–
23, 46], which tune the detection engine based on attacker-generated
exploits and benign web sites, have been proposed and significantly
improved state of the art. However, although anomaly-based ap-
proaches can detect unknown attacks, they could succumb in adver-
sarial environments. Inspired by the data pollution on polymorphic
worm detection [41], we designed and implemented polluted drive-
by download attacks, which could significantly reduce the detection
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Figure 1: Signature Comparison.

rates of those anomaly-based detectors.
To countermeasure such data pollution, we turn to vulnerability-

based approaches. In this emerging direction, although the pre-
cise description of a network protocol layer vulnerability signa-
ture has already been used in the network intrusion detection sys-
tems (NIDS) [32, 54], its application on Web drive-by download
attack detection is very limited. In BrowserShield [44], Reis et al.
rewrite JavaScript codes and enforce stateless security policies (sig-
natures), such as checking the parameter length of a function call.
The other work by Song et al. [50] matches the inter-module com-
munication with vulnerability signatures. However, neither of these
techniques can precisely represent the exact vulnerability condi-
tions of drive-by download attacks. More specifically, the rules in
BrowserShield do not have stateful data structures to record con-
trol or data flow, and the signatures in the work by Song et al. lack
sufficient information for control flow at the inter-module level.

In summary, we believe that an approach detecting drive-by down-
load attacks should address the following challenges:

• Signatures for Stateful Intra-module Vulnerabilities. The
signature for drive-by download attacks targeting stateful intra-
module vulnerabilities should contain both control and data flows
during matching.

• Resilience to Polluted Data. The system should be resilient to
polluted training and testing samples provided by the attackers.

• High Performance. The runtime detection system should have
an acceptable overhead to the pure execution of web pages.

In this paper, we propose JShield, vulnerability-based detection
of drive-by download attacks. JShield has been adopted by Huawei,
the world’s largest telecommunication company. We position JShield
opcode signatures in Figure 1 with other known vulnerability signa-
tures. Neither symbolic constraint signature nor regular expression
signature can represent a drive-by download vulnerability that takes
Javascript, a Turing complete language, as input, since they do not
have loops. Meanwhile, a traditional Turing machine signature is
so complex that it requires a signature as large as a whole browser.
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Figure 2: Six Steps of a Drive-by Download Attack.

Thus, we abstract lower level Turing machine to a higher level op-
code Turing machine and design detection format of our opcode
signature. To further make it scalable, we also use regular expres-
sion (filter format of opcode signature) to filter a large number of
benign traffic.

The current signature generation process involves some manual
effort. However, we believe that the amount of manual work is
small due to the small number (approximately 10) of vulnerabili-
ties each year. Actually, even for a large amount of signatures, most
network intrusion detection/prevention system (IDS/IPS) vendors,
such as Snort, Cisco and Juniper, all generate these signatures man-
ually [5, 13].

Besides being the first to design polluted drive-by download at-
tacks and evaluate their effectiveness on the state-of-the-art anomaly-
based approaches, we make the following contributions in this pa-
per:

• Stateful Drive-by Download Vulnerability Signatures. Our
vulnerability signature is a deterministic finite automaton (DFA)
with a variable pool recording both control and data flows to
detect stateful intra-module vulnerabilities of drive-by download
attacks.

• Vulnerability Signature at the Opcode Level. A vulnerabil-
ity signature at the opcode level can precisely describe a given
vulnerability.

• Fast Two-stage Matching. We design a two-stage matching
process to speed up the detection. The filtering stage adopts fast
regular expression matching for a given test sample, and then
if the sample is captured at the filtering stage, it is subject to a
further matching with opcode signature.

To evaluate JShield, we investigate the vulnerability coverage of
JShield and find that JShield is able to handle all the recent Java-
Script engine vulnerabilities of web browser and portable document
files (PDF) reader. The overall evaluation shows that JShield has
introduced little performance overhead to pure execution. The av-
erage overhead of top 500 Alexa web sites is 9.42% and the median
is 2.39%.

2. THREAT MODEL
The paper focuses on drive-by download attacks consisting of

two major stages: pre-exploit stage and post-exploit stage, which
can further divide into six steps as shown in Figure 2.

At the pre-exploit stage, a benign user is lured to visit a malicious
web site (step one). Then, malicious contents are downloaded, and
malicious JavaScript codes, possibly obfuscated by eval, setTime-
out, and DOM events, get expanded by execution (step two). Dur-
ing execution, some malicious JavaScripts also fill the heap with
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Figure 3: Anomaly-based Approaches to Detect Drive-by Download At-
tacks.

shellcodes and nop sleds to overcome address space layout ran-
domization and facilitate attacks (step three).

After all the preparation, the malicious JavaScript exploits a cer-
tain vulnerability (step four), and thus the injected shellcode takes
control of the browser to download malware (step five), which is
subsequently executed on the victim machine (step six).

To distinguish our threat model from others, we also mention
other attacks below - these however are out of scope of the paper.

Attacks without any JavaScript Interaction. Similar to existing
works like Zozzle [23], we only focus on the JavaScript part of
a drive-by download attack. If an attack is purely related to HTML
parser, CSS parser or font processing, neither Zozzle with abstract
syntax tree (AST) features nor JShield with opcode vulnerability
signatures can detect the attack. Instead, due to lack of full featured
obfuscation techniques, this type of attacks should be prevented by
traditional NIDS.

Other Web-based Attacks. Other web-based attacks, such as cross-
site scripting (XSS) attacks, cross-site request forgery (CSRF), and
so on are out of scope of the paper. People should rely on existing
defense mechanisms [19, 52] for those attacks.

3. POLLUTED DRIVE-BY DOWNLOAD AT-

TACKS
Anomaly-based approaches [18, 22, 23, 46] first train a detection

engine based on exploits generated by attackers as well as benign
samples collected from the Internet, and then perform detection by
the tuned engine. An overview architecture is shown in Figure 3.
Normally, a machine learning engine is deployed in the training
stage, which extracts malicious and benign features from training
data and then trains the detection engine.

In this section, we discuss the efficacy of anomaly-based detec-
tion in adversarial environment. We understand that the advan-
tage of anomaly-based detections is that they can detect unknown
attacks, however in this paper we only focus on the behavior of
anomaly-based detection in adversarial environment.

Generally, an anomaly-based detection could be evaded in two
ways, namely, polluting attacker generated exploits in training stage
and altering malicious samples in detection stage. We introduce
data pollution in detection stage first because of its effectiveness.
For data pollution, we use naive Bayes engine adopted by Zoz-
zle [23] as an example to show how to evade anomaly-based ap-
proaches.

3.1 Polluting Samples at Detection Stage
An attacker can alter malicious samples by injecting benign fea-

tures (BF), thus increasing the probability of classifying those sam-
ples as benign and evading naive Bayes engine. Intuitively, the
benign features decrease the anomaly by reducing the significance



Table 1: Zozzle’s Detection Rate.

Original Rate Rate after Pollution at Detection Stage

True Positive 93.1% 36.7%
False Positive 0.5% 0.5%

of the malicious features statistically. Here is the detailed reason.
Assume there is a sample with malicious feature (MF). According
to the definition, P (M |MF ), the probability of malice given the
existence of one malicious feature, is larger than 0.5. Now let us as-
sume that one benign feature (BF) is introduced to that file. Given
that MF and BF are independently distributed in naive Bayes, we
have Equation 1.

P (M|MF,BF ) =
P (MF,BF |M) ∗ P (M)

P (MF,BF )

=
P (MF |M) ∗ P (BF |M) ∗ P (M)

p(MF ) ∗ P (BF )

=
P (BF |M)

P (BF )
∗ P (M|MF )

(1)

Since fewer BFs exist in malicious files,
P (BF |M)
P (BF )

< 1. Thus,

Equation 1 shows that the existence of one benign feature reduces
the probability of the sample’s malice. If enough benign features
are introduced, P (M |MF,BF,BF1, BF2...), the probability of
the sample’s malice, will be eventually less than 0.5, resulting in a
mislead of the Bayes classifier.

3.2 Real-world Experiments
We use Zozzle [23], the most recent and successful machine

learning detection, as a case study to show how to evade an anomaly-
based approach, however, our discussion is not restricted to Zozzle.
Since Zozzle is not open source, we strictly followed what has been
described in the paper [23], implemented our version of Zozzle, and
reproduced comparable detection rate for unpolluted samples as the
one reported by Zozzle.

The testing data set is from Huawei, which contains unclassified
malicious JavaScript codes collected from their customer reporting,
other anti-virus software reporting, etc. After filtering all the land-
ing pages, we collect 880 malicious samples (Zozzle adopts 919
JavaScript malware samples [23]). Meanwhile, Top 5,000 Alexa
web sites [3] are used as benign samples during training. After
manual and automatic selection documented in Zozzle, we collect
300 benign and malicious features.

Since an attacker cannot acquire our benign features used in the
system, we collect all the common features among Top 5,000 Alexa
web sites and add them to malicious samples. The size of each
malicious sample increases 45% on average, i.e., 396KB. As shown
in Table 1, pollution at the detection stage decreases the overall
accuracy to 36.7%.

In addition to Zozzle, we also evaluated five popular anti-virus
programs1 selected from an anti-virus software review web site [1],
which are: 1) Avira Antivirus Premium 2013, 2) AVG Internet Se-
curity 2013, 3) Kaspersky Internet Security 2012, 4) Norton Inter-
net Security 2013 and 5) Trend Micro Titanium Internet Security
2013. The results are shown in Table 2. Before data pollution,
the detection rates of anti-virus software except AV4 are all above
85%. However, after data pollution, the detection rates of them
are all below 4%. Therefore, existing anti-virus software, which
are blackbox to us and some of which belong to regular expression
based approach, are not robust to data pollution either.

4. OVERVIEW

1This order does not correspond to the order of AV1 to AV5 in
Table 2.

Table 2: The detection rate of five anti-virus programs before and after data
pollution.

Anti-virus Original Rate Rate After Pollution

AV1 98.00% 0.58%

AV2 89.33% 3.58%

AV3 92.41% 2.00%

AV4 20.67% 0.08%

AV5 87.58% 2.00%

As discussed in previous section, attacker generated samples adopted
by anomaly-based detections could be polluted, and thus we resort
to vulnerability-based detections. In this section, we first present
two types of deployment for JShield. Then, we model drive-by
download vulnerabilities based on their control and data flows.

4.1 Deployment
JShield is a dynamic vulnerability signature based approach to

de-obfuscate and detect drive-by download attacks. There are two
major types of deployment for JShield: 1) at the Web Application
Firewalls (WAF) or Web IDS/IPS and 2) at Web malware scan-
ning services. For the former, JShield is deployed as a component
of anti-virus software, or as a detection engine at Internet Service
Providers (ISP) gateways. For example, Huawei deploys our sys-
tem in their intelligent cloud, inspecting potential malicious traffic
from their switches and routers. On the other hand, JShield can
also be deployed on the sever side as a Web malware scanning ser-
vice, by search engines such as Google and Bing, or by a security
company for online web malware scanning.

Compared to an anomaly based approach like Zozzle [23] which
needs to retrain the detection engine to accommodate new drive-by
download exploits, JShield only needs to update its vulnerability
signature database for new drive-by download vulnerabilities. Due
to that fact that the number of vulnerabilities is always much less
than the amount of exploits, the update overhead of JShield will be
small.

4.2 Vulnerability Modeling
Traditionally, there are three types of signatures in literature [20]:

Turing machine signature, symbolic constraint signature, and regu-
lar expression signature. We look into those signatures in the con-
text of a drive-by download attack where the vulnerable program is
a browser and the input exploit is a JavaScript program. The Tur-
ing machine signature generation process from Brumley et al. [20]
would output a signature as large as a browser, hence making it
unusable. On the other hand, neither symbolic constraint signature
nor regular expression can represent a complex language like Java-
Script which have loops. Thus, for preciseness, we need to have
a new signature between a Turing machine signature generated by
Brumley et al. and a symbolic constraint signature. For matching
speed, we first use regular expression signature to filter a majority
of benign JavaScript and then detect malicious JavaScript using the
precise detection format of our opcode signature. Since regular ex-
pression signature is well known, we focus on the detection format
of our opcode signature.

To model a vulnerability, we define a vulnerability condition as
a function that takes a certain path of a program’s control and data
flow graph, and output whether the path is exploitable or not. For-
mally, given c ∈ C, where C is all possible paths of the program’s
control flow graph, and d ∈ D, where D is all possible paths of the
program’s data flow graph, a vulnerability condition k is a function,

k : C ×D → {Safe,Exploit}
In order to match a certain vulnerability, its corresponding vul-

nerability signature need to match both the path in the control flow
graph and the one in the data flow graph. In the context of a drive-
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Figure 4: Vulnerability Modeling.
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Figure 5: Simplified Opcode Level Control Flow Graph of JavaScript Inter-
preter.

by download attack where the vulnerability exist in a JavaScript
engine or a plugin, our observation is that control and data flow
graphs of the opcode input is an abstraction of the control and data
flow graphs of the native JavaScipt engine. Thus, as shown in Fig-
ure 4, we can model the underline vulnerability in the JavaScript
engine or plugin by abstracting the control and data flow to the op-
code level.

To study the control flow, we investigate the source code of sev-
eral JavaScript engines [14, 17, 39], and find that the main body of a
JavaScript interpreter switches to different branches of codes based
on the input opcode through a code pattern similar to select input

case opcode. Then, different opcodes and parameters determine
subsequent API calls to external objects, plugin or DOM. There-
fore, we form the control flow graph (CFG) of JavaScript engine
into an opcode driven three-layer structure as shown in Figure 5.
The CFG will shift based on the input opcode sequence. In other
words, opcode CFG is built upon the original application CFG.

Next, we categorize vulnerabilities into two types: JavaScript
engine vulnerability (including a web browser JavaScript engine
and/or a plugin JavaScript engine such as Adobe Reader JavaScript
engine) and external JavaScript engine vulnerability. We will ex-
plain them respectively.

Let us assume that the control flow graph of a JavaScript engine
vulnerability condition is triggered by travelling through S1_1 and
S1_2 of Figure 5. Since there is only one path to travel to S1_1
and/or S1_2, which is to offer the corresponding opcode, the op-
code level signature represents this vulnerability.

For an external JavaScript engine vulnerability, the API calls to
those components such as plugin and DOM are determined by op-
code sequences and parameters. Song et al. [50] show that the inter-
module communication can represent a vulnerability and thus our
opcode signature can achieve the same functionality.

Therefore, we propose an opcode level deterministic finite au-
tomaton (further explained in Section 5) to match the opcode con-
trol flow, an abstraction of the JavaScript engine control flow, in a
vulnerability condition.

To study the data flow, JShield needs to record additional states

1 switch (opcode) {

2 case get_by_id:

// (1) look up the prototype chain

// (2) invoke getter method

// (3) move results to register r0

3 break;

4 case put_by_id:

// (4) move null to the prototype

5 break;

6 }

Figure 6: Pseudo JavaScript Engine Codes for CVE-2009-1833.

1 var obj = new Object();

2 obj.__proto__.__defineGetter__("a"

, function () {

3 this.__proto__ = null;

4 gc();

5 return 0;

6 });

7 obj.a;

Figure 7: Example I: CVE-2009-1833: Malicious JavaScript Exploit that can
Trigger a Mozilla Firefox JavaScript Engine Vulnerability.

related to the vulnerability. Therefore, we propose a variable pool
(further explained in Section 5) to match the opcode data flow, an
abstraction of JavaScript engine data flow, in a vulnerability condi-
tion.

Now, we illustrate the point by a concrete running example from
CVE database.

Example I. In Figure 6, we show how to trigger CVE-2009-1833 in
the pseudo code of JavaScript engine. The vulnerability is triggered
by two conditions: (i) looking up through prototype chain to get a
getter function, and (ii) setting the prototype itself to be null inside
the getter function.

When we abstract the JavaScript engine vulnerability to the op-
code level and take a look at a concrete exploit example trigger-
ing vulnerability in Figure 7 and Figure 8, we find that the opcode
level CFG is an abstraction of the underline level JavaScript engine
CFG. S1_1 in Figure 5 is visited by get_by_id and S1_2 is visited
by put_by_id. For the data flow, to match CVE-2009-1833, JShield
needs to remember the memory address of the prototype.

In sum, the JShield signature needs to match both the control
flow graph and the data flow graph of opcode sequence of a Java-
Script code, an abstraction for the control and data flow graph of the
underline JavaScript engine, for a drive-by download vulnerability
condition as shown in Figure 4.

5. OPCODE VULNERABILITY SIGNATURE
As discussed in Section 4.2, a successful opcode signature needs

to match both the control flow and the data flow of a vulnerabil-
ity condition. In this section, we introduce the detailed design of
opcode signature matching drive-by download vulnerabilities. To
speed up the matching process, two types of opcode signature, the
detection format and the filter format, are described here by their
definition, structure and matching process. In the end, we present
the robustness of opcode vulnerability signature to polymorphic at-
tacks.

In the current version of JShield, all the opcode vulnerability sig-
natures are generated manually for each vulnerability. However, we
believe that the amount of involved manual work is small due to the
small number (<100) of vulnerabilities each year. Actually, even
for a large amount of signatures in an intrusion detection system



[ 199] get_by_id r0, r1, a(@id1)

[ 0] enter

[ 1] convert_this r-7

[ 3] mov r0, r-7

[ 6] put_by_id r0, __proto__(@id0), Null(@k0)

[ 15] ret Int32: 0(@k1)

Figure 8: Generated Opcode Snippet when Executing JavaScript Codes in
Figure 7.

like Snort, those signatures are all generated manually [13]. Fur-
ther, we also expect future improvement can automate vulnerability
signature generation. As an analogy, Shield [54] proposes protocol
level vulnerability signatures, and then Brumley et al. [20] propose
their automatic generation.

5.1 Definition
Opcode signature is a signature to match an opcode sequence, an

instruction set generated by a JavaScript interpreter for efficient ex-
ecution. For example, opcodes in Figure 8 are the results of trans-
mitting JavaScript code in Figure 7. Op code signature has two
formats: a detection format used for matching and a filter format
used for fast filtering.

We first formalize detection format of opcode signature as a de-
terministic finite automaton (DFA) plus a variable pool in Defini-
tion 1.

DEFINITION 1. We define detection format of opcode signature

as a 10-tuple (Q, Σ, P, V, g, G, f, q0, p0, F), where

• Σ is finite set of input symbols, P is finite set of variables, V are

the value set of P , and Q is finite set of states.

• g, is a function P → V .

• G is the set of all possible g.

• f is a transition function, Q× Σ×G → Q×G.

• q0 ∈ Q is a start state, p0 ⊆ G is an initial variable pool, and

F ⊆ Q.

For input ai ∈ Σ and a variable pool p ⊆ G, the next state of

the automaton obeys the following conditions:

1. r0 = q0, p = p0.

2. < ri+1, p > = f(ri, ai, p), for i = 0,..., n-1.

3. rn ∈ F .

In Definition 2, we formalize the filter format2 of the opcode
vulnerability signature as a regular expression.

DEFINITION 2. We define the filter format of opcode signature

as a 5-tuple (Q, Σ, f, q0, F), where

• Σ is finite set of input symbols, and Q is finite set of states.

• f is a transition function, Q× Σ → Q.

• q0 ∈ Q is a start state, and F ⊆ Q.

For input ai ∈ Σ, the next state of the automaton obeys the

following conditions:

1. r0 = q0.

2. ri+1 = f(ri, ai), for i = 0,..., n-1.

3. rn ∈ F .

5.2 Structure
We introduce the structures of the detection and filter format of

opcode signatures in this section.

2Unless specified, opcode signature refers to the detection format
of opcode signature. The filter format refers to the filter format of
opcode signature.

Detection Format:

# Method Opcode Condition Action Next

(1) match get_by_id isFromProtoChain() x=proto (2)

default quit N/A

(2) match enter true i=0 (3)

default quit N/A

(3) match enter true i=i+1 (3)

match ret i==0 quit N/A

match ret i>0 i=i-1 (3)

match put_by_id x==dst & src==null report N/A

default jmp (3)

Filter Format:

get_by_id enter .* put_by_id

Figure 9: Opcode Signature for CVE-2009-1833.

5.2.1 Detection Format

The detection format of an opcode signature, as shown in Fig-
ure 9, can be formalized into the following three concepts: clause,
sentence, and signature.

A clause in an opcode signature consists of five fields: “method”,
“opcode”, “condition”, “action”, and “next”. The “method” field
specifies what to be taken in this clause, where two methods are
currently defined: “match” and “default”. “Match” means to match
the opcode, and “default” means that the default actions should be
taken if no matches are found in other clauses. Then if both “op-
code” field matches the input opcode and the expression in “con-
dition” field is true, the action in the “action” field will be taken
and current state will be transferred to the number in “next” field,
which represents the sentence number that will be explained right
after this paragraph.

Multiple clauses plus an index number together build a sentence,
a state in automaton. The number is used to differentiate one sen-
tence from the others. The clauses in one sentence are in sequence,
which means if JShield finds the first match, the remaining ones
will be skipped. If no matches are found, the action corresponded
with the “default” clause will be taken.

A signature consists of multiple sentences. During matching, the
automaton will transfer from one sentence to anther based on the
matching results.

5.2.2 Filter Format

The filter format of an opcode signature, as shown in Figure 9,
can be formalized as a regular expression, which takes a series of
opcodes as input. For detection and filter format of opcode signa-
ture, the following statement holds: “Each detection format of an
opcode signature has a corresponding filter format of that opcode
signature”.

Here is the reason. Given a detection format of an opcode sig-
nature, for each sentence, we extract all Opcode fields and align
them into a unit by bracket symbol of regular expression. Then,
by following the jmp operations in Action field, we align the units
into a regular expression. If a self loop is recognized, a symbol ∗
is introduced. The end of the regular expression is one or multiple
opcodes in bracket that leads to the vulnerability.

5.2.3 Data Structure of Both Formats

The filter format is simply stored as a regular expression. To
speed up matching process, we construct a reverse index for the
detection format of opcode signatures by the opcode field. Suppose
we have two signatures: Sig1 and Sig2. Each signature has two
sentences. Each sentence has two clauses. Under each opcode,
both two signatures exist. Under each signature, both two sentences
exist. Under each sentence, only the clause with that opcode is



Algorithm 1 Matching Detection Format

1: State← Starting_State

2: for Input_Opcode in All_Opcodes do

3: for Signature in Pool[Input_Opcode] do

4: Sentence ⇐ Signature[State]
5: Clause⇐ Sentence.Clause
6: if equal(Method,Match) then

7: if (IsAllTrue(Clause.Conditions) then

8: Take Actions
9: Signature.State⇐ New_State
10: Break
11: end if

12: else[equal(Method, Default)]
13: Default Actions
14: Signature.State ⇐ Default_State
15: Break
16: end if

17: end for

18: end for

present. Other clauses of that sentence are under other opcodes.

5.3 Generating Opcode Vulnerability Signa-
ture

We generate the opcode vulnerability signatures semi-automatically
with the following three steps.

1. Based on the semantics of the vulnerability (e.g., from the CVE
description or vulnerability patches), we locate the opcodes that
are involved in the vulnerability. We create a DFA with each
involved opcode being a node (state).

2. From the data flow part, we extract the critical data structure
involved in the vulnerability related to each opcode operation
and define a variable in the variable pool of “Action” field in
opcode signature.

3. We combine the DFA and the variable pool together by intro-
ducing each variable to the “Condition” field of opcode signa-
ture based on the data flow connection between opcodes.

Again, we use CVE-2009-1833 in Figure 7 as an example. We
first automatically generate control and data flow [28]. Then, man-
ual work is involved to find out the semantics of the vulnerability,
e.g., for CVE-2009-1833, line 3 and line 7 together cause the vul-
nerability. From the control flow graph part, the sequence of three
opcodes (get_by_id, enter, and put_by_id) will lead to the vulner-
ability condition. On contrary, another sequence of three opcodes
(get_by_id, enter, and ret) will lead to a safe state. Therefore, we
create a detection format of our opcode vulnerability signature with
three states in DFA as shown in Figure 9, and meanwhile, we use
a counter i to record the number of opcode enter and ret. Next,
from data flow part, we find that line 3 and line 7 are connected
by the memory address of the prototype, and therefore, we use x

in variable pool to record that data. In the end, we combine the
DFA and the variable pool to the detection format of our opcode
vulnerability signature, and follow steps discussed in Section 5.2.2
to generate the filter format of opcode vulnerability signature.

5.4 Matching Opcode Vulnerability Signature
The matching process of opcode signatures can be divided into

two parts: pre-matching by the filter format of opcode and match-
ing by the detection format of opcode signature.

At the filtering stage, we match the opcode sequence outputted
from de-obfuscation engine with the filter format of opcode signa-
ture. If a sequence of opcodes does not match with the filter format
of opcode signature, we drop it off because it will not match with
the detection format of that opcode signature either. By filtering a

Sample One:

1 this.__defineGetter__("x", function (x){

2 ’foo’.replace(/0/g,[1].push)

3 });

4 for (let y in [,,,])

5 for (let y in [,,,])

6 x = x;

Sample Two:

1 while (true) {

2 Array.prototype.push(0);

3 }

Figure 10: Example II: Different Samples that Trigger CVE-2009-0353
(Extracted and Simplified from CVE Library).

large amount of unmatched samples using fast regular expression
operation, we can accelerate the total matching process.

After the filtering stage, we match the opcode sequence with
detection format. The pseudo-code of the matching algorithm is
shown in Algorithm 1. Given one opcode as an input, the match-
ing algorithm goes over every signature with that opcode. For each
signature, JShield directly fetches the corresponding clause that be-
longs to the sentence of the current state because JShield has al-
ready indexed all the signatures by opcodes. Then, JShield checks
whether the conditions are satisfied, and accordingly takes actions.
The complexity for this process is O(Maximum number of Signa-
tures per Opcode × Number of Opcodes).

5.5 Robustness to Polymorphic Attacks
A CVE-2009-0353 example in Figure 10, which is triggered

when repeating push operation of an array exceeding the memory
limit, shows that JShield reduces polymorphic attacks. Instead of
reporting an out-of-memory error, illegal memory address will be
overwritten.

In Figure 10, we show two different snippets of JavaScript trig-
gering CVE-2009-0353, which fire push operation in two different
ways at the JavaScript level. However, at the opcode level, both
need to call opcode get_by_id first to get push method, and then
repeat using opcode call (only one call is shown in the figure). Af-
ter generating the call graph for two JavaScript engines [14, 16] by
doxygen [7] and thus examining functions that calls push method,
we find that the only way of calling push method is through the
opcode call. In other words, the opcode signature maps to the vul-
nerability.

For polymorphic attacks, we show that the number of polymor-
phism reduces at the opcode level because (i) one opcode signature
maps to multiple source code representations of that vulnerability;
and (ii) one source code representation of a vulnerability maps to
one specific opcode signature given an opcode instruction set.

The reasons are as follows. Assume a vulnerability is repre-
sented by an opcode signature. We follow the state transition and
get opcode sequence as follows: op_code1, op_code2, op_code3
and so on. Each opcode can be included in multiple JavaScript
statement. For example, op_call can be triggered by direct func-
tion call and getter property of an object. Similarly, op_jmp can be
triggered by while loop, for loop, and so on. We will choose differ-
ent JavaScript statement and write corresponding JavaScript source
code. To the opposite, if we have a source code representation of
a vulnerability and the opcode instruction set is fixed, we can feed



DOM
JS

Engine

Browser

Filter  Format Detection  Format

Drop
Drop

Web 

Page

JavaScript De-obfuscation Engine Signature Matching Engine

Event Triggering Opcode Signature Lib

Pre-match
Filtering

Opcode
Matching

Report

Figure 11: System Architecture.

the source code into the interpreter with the opcode instruction set.
One unique opcode sequence is outputted from the interpreter.

6. SYSTEM ARCHITECTURE
Figure 11 shows the overall architecture of JShield, which con-

sists of two main engines, a JavaScript de-obfuscation engine and
a signature matching engine. The former takes a web page as in-
put, de-obfuscates JavaScripts, and then outputs the correspond-
ing opcode sequence; the latter takes an opcode sequence as input,
matches the sequence with opcode signature, and finally gives a
report about whether the incoming web page is malicious .

The detailed process is as follows. When a web page is fed to a
JavaScript de-obfuscation engine of JShield, it is executed on a real
browser with event triggering module, which mimics user’s behav-
iors to trigger all the DOM events. If the web page contains PDF,
JShield adopts MPScan [35] to hook an Adobe Reader and out-
put all the opcode sequences. After de-obfuscation, the signature
matching engine first filters opcode sequences outputted from Java-
Script de-obfuscation engine. For the opcode sequences not filtered
out, JShield further matches them with detection format of opcode
vulnerability signatures.

7. IMPLEMENTATION
We use WebKit r101347 together with Qt 4.8.1 on Linux to im-

plement JShield. Web pages are directly fed into a modified version
of WebKit that is integrated with event triggering engine. External
libraries and virtual functions are loaded into WebKit through Java-
Script files. Then opcodes are generated and fed into the opcode
matching engine.
De-obfuscation. We introduce the de-obfuscation engine of JShield,
which increases the total amount of inspected source code written
by attackers, from two aspects: events recording, and event trigger-
ing.

We first modify class Document to make every document main-
tain a queue, which records all the registered event listeners. Then
we modify function addEventListener in Node.cpp file. We choose
to modify this function in order to make sure that all listeners would
be registered, because this function is called every time a listener
is added. So when an event listener is trying to register itself on
a node, the node will call its method addEventListener(), in which
the node adds the listener in the queue maintained by the node’s
Document object. The modified addEventListener() function also
determines whether to call eventTriggering() function to trigger the
new registered event listener right away, based on whether the on-
load event listener is invoked.

Then, we add two functions: void trigerAllWindowEvents() in
DOMWindow.cpp file, used to trigger all the event listeners reg-
istered on Window object, and void eventTriggering() in Docu-
ment.cpp file, used to iterate and trigger all its children nodes recorded
in the queue. Next, we modify the function void dispatchWin-
dowLoadEvent() in Document.cpp to call trigerAllWindowEvents()

and eventTriggering() functions and trigger all the event listeners
registered so far.
Signature Matching Engine. We first extract opcodes from We-
bKit engine of which the interpretation mode for JavaScript is en-
abled. All the opcodes are interpreted by privateExecute function
in Interpreter.cpp at JavaScriptCore of WebKit. We extract all the
register address together with opcode names during the interpreta-
tion and feed them into the opcode matching engine.

Next, we use the standard regular expression library [12] in C++
to match the filter format of opcode signature, which is stored as
a string. After filtering, the detection format of opcode signatures
is stored as a map container of STL [15], which uses a red-black
tree structure. All the signatures are indexed by opcodes. The data
domain of opcode signatures are implemented by a perl interpreter
in C [8].

8. EVALUATION
We first introduce our methodology in Section 8.1. Next, we

evaluate vulnerability coverage in Section 8.2 and robustness to
data pollution in Section 8.3. In the end, We evaluate the perfor-
mance of JShield including JavaScript obfuscation engine, signa-

ture matching engine, and the overall system in Section 8.4.

8.1 Methodology
To evaluate JShield, we obtain JavaScript engine vulnerabilities

and plugin vulnerabilities from CVE database, the details of which
can be found in Section 8.2. We adopt three metrics to evaluate
signature matching:

• Vulnerability Coverage Rate. Vulnerability coverage rate is de-
fined as the number of vulnerabilities covered by a certain ap-
proach divided by the number of all the vulnerabilities.

• Robustness to Data Pollution. We evaluate the robustness to data
pollution by detecting attacks injected with benign features and
attack variants using the same vulnerability.

• Performance. We measure the latency caused by the event trig-
gering process, the signature matching process, and the overall
JShield.

8.2 Vulnerability Coverage
Two sets of vulnerabilities are evaluated on JShield, which are

JavaScript engine vulnerabilities and plug-in vulnerabilities. JShield
contributes on detecting JavaScript engine vulnerabilities, but for
plug-in vulnerabilities, we are on par with existing works [44, 50].

8.2.1 Data Source

We evaluate vulnerability coverage of JShield on those vulner-
abilities in national vulnerability database (NVD) [11]. (i) To ac-
quire JavaScript engine vulnerabilities of web browsers, we search
the keyword “JavaScript Engine” at the search engine provide by
NVD, and examine the “References to Advisories, Solutions, and
Tools” part of all the results. Each “External Source” will be ex-
amined. We pay special attention to the exploiting codes posted by
each external source. (ii) To acquire JavaScript engine vulnerabili-
ties of pdf readers, we search the keyword “JavaScript reader” and
“JavaScript pdf” at the search engine provide by NVD. The same
procedure for a JavaScript engine vulnerability will be applied to
this type of vulnerability. (iii) To acquire inter-module plugin vul-
nerabilities, we obtain information from Song et al [50].

During investigation, we output the opcode sequence of exploit-
ing codes. Based on the output opcodes, we will form an opcode
signature. If we can successfully construct an opcode signature, we
will consider JShield can detect the vulnerability. If the signature



Table 3: Feasibility Comparison of JShield with Other Vulnerabilities-
based Drive-by Download Attack Detection.

Vulnerability
BrowserShield [44] Song et al. [50] JShield

Position

JS Engine 3/22 0/22 22/22

PDF JS Engine 4/18 0/18 18/18

Plug-in 20/21 21/21 21/21

Note: All the numbers in the table are theoretical detection ratio
for each approach. BrowserShield represents those with simple
policy without control and data flow matching, and Song et al.
represent those monitoring only intra-module communications.

Table 4: JShield’s Detection Accuracy under Data Pollution.

Original Pollted

TP for Web Pages 100% 100%
FP for Web Pages 0% 0%
TP for PDF 100% 100%
FP for PDF 0% 0%

Note: TP is short for true positive, and FP is short
for false positive.

contains only one state, we will consider BrowserShield [44] can
detect the vulnerability. If the vulnerability does not contain any
multi-module communication, we will consider Song et al. [50]
cannot detect the vulnerability.

8.2.2 Coverage Results

Three types of vulnerabilities are evaluated here, which are Java-
Script engine vulnerabilities of web browsers, JavaScript engine
vulnerabilities of PDF readers, and inter-module plug-in vulnera-
bilities, respectively.

• JavaScript Engine Vulnerabilities of Web Browsers. We evalu-
ate all twenty four JavaScript engine vulnerabilities from 2009
to 2014. We do not find any test cases for CVE-2011-2991 and
thus skip this vulnerability. CVE-2011-4682, which bypass the
same origin policy, is out of scope of this paper and thus skipped.
For year 2014, because both NVD and CVE prevent public view
of recent vulnerabilities due to security concerns, we can only
find two JavaScript engine vulnerability at the time of our inves-
tigation.
The results show that JShield can detect all of those vulnera-
bilities. BrowserShield [44] can only detect 3 out of 22 Java-
Script engine vulnerabilities. Song et al. [50] cannot detect any
of those vulnerabilities because they are not plug-in vulnerabil-
ities. A summary is shown in the second row of Table 3.

• JavaScript Engine Vulnerabilities of PDF Reader. Except for
five cross-site scripting vulnerabilities, all the JavaScript engine
vulnerabilities of pdf readers from 2007 to 2014. We cannot
look in the references related to two Google chrome pdf vulner-
ability because Google chrome group restrict the permission of
viewing recent vulnerabilities. The results of detecting the rest
vulnerabilities are shown in the third row of Table 3.

• Inter-module Plug-in Vulnerabilities. We obtain all the plug-in
vulnerabilities from Song et al. [50], and find that JShield can
detect all the plug-in vulnerabilities as shown in the fourth row
of Table 3.

8.3 Robustness to Data Pollution
The same malicious data set and methodology as Section 3.1 are

used here for web pages. Benign data set for web pages are ex-
tracted from Top 500 Alexa web sites. Both malicious and benign
PDFs are acquired from security company containing 214 benign
and 213 malicious, and the same data pollution for web pages are
performed. Since there is no training stage for JShield, the pollu-
tion of training data is not applicable for JShield. Results are shown
in Table 4. Excluding those samples only contain HTML but no
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Figure 12: Cumulative Distribution Function (CDF) of Overhead Intro-
duced by JShield on Top 500 Alexa Web Site (The average is 9.42%, and
the median is 2.39%.)

JavaScript, JShield can detect all those samples. Note that there is
no difference between the detection rate of original data and data
with injected benign features. As pointed in Section 2, those attacks
are out of our threat model. We do not have any false positives be-
cause the vulnerability signatures containing control and data flow
information can precisely describe the corresponding vulnerability.
Interestingly, we even find that there is no web site passing the first
stage, i.e. regular expression matching of the filter format.

8.4 Performance
We measure the performance of signature matching engines of

JShield and overall performance respectively in Section 8.4.1 and 8.4.2.

8.4.1 Signature Matching Performance

We measure the JavaScript execution latency introduced by JShield
against the original execution latency of top ten Alexa [3] web sites.
We measure the latency by injecting codes into WebKit engine be-
fore and after JavaScript execution. Normally JavaScript is exe-
cuted multiple times so we accumulated all the latency together.
Both the filtering and the detection format opcode matching are
measured.

Note that for top one hundred Alexa web sites, we do not find any
that can bypass the pre-filtering stage against all the vulnerabilities
in our library. In other words, there is no false positive for top one
hundred Alexa web sites given our data set.

In Figure 13, we show the latency introduced by the filtering
and the matching process of JShield. For matching with detection
signatures, the latency is comparable to the latency (2 to 14 times
slower) introduced by Nozzle [43] without object sampling. In the
worst case, Twitter is about 6 times slower than normal execution.
The fastest web site Wikipedia is within 2% because there is little
JavaScript hosted on Wikipedia.

For filtering, since regular expression matching is very fast, it
is predictable that the latency is small. As shown in the figure,
filtering overhead is within 2%.

8.4.2 Overall Performance

In Figure 12, we show the overall performance overhead in-
troduced by JShield. The experiment is performed on Top 500
Alexa [3] web site. We test each web site ten times with and with-
out JShield support, get the average latency and then calculate the
overhead. The average overhead among 500 web sites is 9.42%,
the median overhead is 2.39%, and the standard deviation is 3.17%.
Since the pre-filtering process - regular expression matching is very
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fast, most of the overhead is introduced by the event triggering en-
gine.

9. DISCUSSION
Does the opcode signature set change if we implement JShield with

a different browser kernel?

Answer: Yes, one opcode signature set binds to one specific JShield
implementation, which is similar to the case that one binary can
only be executed upon one operating system. However, vulnerabil-
ities in any browser can be represented in one JShield implementa-
tion since we do not require the vulnerability to exist.

Do the attackers need to know features extracted by anomaly-based

detection method to pollute samples?

Answer: No, at detection stage, benign features are extracted from
normal web sites instead of those used by anomaly-based detection
engine (generated from normal web sites and malicious web sites).

10. RELATED WORK
In this section, we discuss the related work from three aspects:

pre-exploit stage, exploit stage, and the others.

10.1 Pre-exploit Stage
Approaches Detecting Heap-spraying Attacks. Instead of de-
tecting a drive-by vulnerability, researchers propose to detect the
heap spraying stage of a drive-by download attack. For example,
Nozzle [43] and Egele et al. [25] detect every object/string created
by JavaScript to examine whether it is executable. DieHarder [40]
provides a new memory allocator for securing the heap from exe-
cution.

Those approaches [25, 43] detecting heap spraying can be evaded
by newly-emerged technology such as Heap Taichi [24], and most
importantly, heap spraying is not a necessary step for a drive-by
download attack. As shown in the dissected and categorized Mal-
ware samples reported by Zozzle [23], 6 out of 19 samples are not
using heap spraying. There are two reasons:

• Address space layout randomization (ASLR) is not enabled by
every browser. For example, Internet Explorer 7 on Windows
Vista prior to SP1 does not enable ASLR by default [2].

• Several other techniques, such as JIT spraying [10] and spray-
ing by calling other languages including VBScript and Action-
Script, can substitute JavaScript heap spraying.

De-obfuscating JavaScripts. Rozzle [30] adopts symbolic execu-
tion, multi-execute JavaScript code, and partially mitigates differ-
ences between multiple browsers. Other previous approaches [18,
23, 33, 46] mostly execute JavaScript and acquire de-obfuscated
JavaScript code. Revolver [29] compares the similarity between
different JavaScript samples and cluster them based on AST fea-
tures, however as shown in Figure 10, two samples with different
ASTs can trigger the same vulnerability.

As an important step of detecting malicious JavaScript code,
those de-obfuscation techniques can be deployed together with JShield.
For example, Rozzle can be included in JShield as a component in
the de-obfuscation engine to defeat those mechanisms that detect
the monitoring environment. Since we do not have any open source
Rozzle available, we leave it as our future work.

10.2 Exploit Stage
There are two ways detecting drive-by download attacks.

Vulnerability-based Approaches. BrowserShield [44], a vulnerability-
based detection, checks whether a JavaScript operation violates
pre-defined policy, thus leading to an attack. Similarly, Song et
al. [50] proposes a vulnerability signature to detect plug-in vulner-
abilities by checking inter-module communication.

Signatures used in BrowserShield [44] and Song et al. [50] can-
not represent stateful intra-module vulnerability such as the one in
Example I. Further, neither BrowserShield [44] nor Song et al. [50]
have considered polymorphic attacks targeting at the same Java-
Script vulnerability, like the one in Example I of Section 3.
Anomaly-based Approaches. Researchers propose many anomaly-
based approaches, such as Zozzle [23], JSAND [22], CUJO [46],
and Wepawet [18]. As illustrated in Section 3, anomaly-based ap-
proaches have several limitations in adversarial environment, i.e.,
an attacker can utilize a polymorphic variance of existing Java-
Script exploit codes or inject false malicious features to bypass
anomaly-based approaches.

10.3 Others
Static Methods. There are also many static analysis of detecting
malicious web page, including but not restricted to Prophiler [21],
Seifert et al. [48, 49], Ma et al. [36], and so on. Obfuscation tech-
nique, such as embedding into eval and document.write, can evade
those approaches.
Protection Mechanisms. There are many protection mechanisms [26,
45, 51, 53] sandboxing a browser principal, which isolate a browser
principal from other parallel browser principals and the host oper-
ating system. Blade [34] detects whether an executable is down-
loaded through a browser GUI. If it is not from a browser GUI, the
downloaded executable will be quarantined. BrowserGuard [27]
adopts similar behaviour based approach to detect downloaded files.
Cisco IronPort [6], SpyProxy [37] and WebShield [31] detect drive-
by download at middle box and transfer safe contents back to the
client. All of those are effective protection mechanisms, but it is
far from deploying them upon all the client browsers and enterprise
network.
Behavior Based Detection. Provos et al. [42] and Google Safe
Browsing [9] use anti-virus software and execution based heuris-
tics to detect the malicious behavior of downloaded malware. Many
other approaches [38, 47, 55] use high-interaction client honeypots
for detection. Their detection scope is limited because the vulner-
ability condition might not be triggered in their specific detection
environment.



11. CONCLUSION
Due to possible data pollution for anomaly-based detection of

drive-by download attacks and no complete vulnerability represen-
tation for vulnerability-based detection, we propose opcode vul-
nerability signature, consisting of a definitive state automaton and
a variable pool to represent both control and data flow of a vulnera-
bility condition. We implement a prototype system, called JShield,
which de-obfuscates JavaScript by event triggering and then per-
forms opcode signature matching. Next, we investigate all the Java-
Script engine vulnerabilities of web browsers from 2009 to 2014,
and those of PDF from 2007 to 2014. We find that JShield can
detect all of them. We also find that JShield can represent all the
inter-module plug-in vulnerabilities obtained from Song et al. [50].
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