Deep Shadows in a Shallow Box

Xiang Huang,
Ankit Mohan and Jack Tumblin
Northwestern University

(a) Captured Image

(b) Computed Image

(c) Weighting Coefficients

Image Based Relighting (IBR) - Video

Courtesy Holger Winnemöller, et al. "Light Waving:
Estimating Light Positions From Photographs Alone" Comput. Graph. Forum 2005

Acquisition Basis Images for IBR

Courtesy Holger Winnemöller, et al. "Light Waving:
Estimating Light Positions From Photographs Alone" Comput. Graph. Forum 2005

Basis Images

Courtesy Holger Winnemöller, et al. "Light Waving:
Estimating Light Positions From Photographs Alone" Comput. Graph. Forum 2005

Capturing of Basis Images

[Debevec et al. 2000]

[Debevec et al. 2002]

Winnemöller et al. 2005]

[Matusik et al. 2002]

[Debevec et al. 2006]

Our Light Stage: Card-board

Diffuse reflective enclosure

Our Light Rig: Outside

Our Light Rig: Outside

Our Light Rig: Inside

Our Light Rig: Inside

Our Light Rig: Inside

Our Light Rig: Inside

Replace Object with a Mirror Ball

Mirror Ball Image 1

Mirror Ball Image 2

Mirror Ball Image 3

Voronoi Partition

Captured Image \#1

N

Captured Image is a Weighted Sums of Deep Shadow Images: Ax=b

Remove Ambient Light: $\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b}$

Deep Shadow
Lighting Matrix
Captured

HDR for High Contrasts

(a) Long exposure 1 second
(b) Short exposure 0.05 second

Captured Image

Deep Shadow Image

Histogram Equalized Image

Field Museum Moche Pots (100-800AD, Peru...)

Open Questions and Future Work

- Direct Physical Verification?
- Area vs. Point light?
- Light Shapes?

Thank you!

This work was supported by:
■ NSF CISE grant NSF-IIS0535236 "Thick Photography": Tools for Rich Digital Archives

- Gifts from Adobe Systems, Inc. and Mitsubishi Electric Research Laboratories (MERL) to support computational photography research

Compute Light Direction (θ, ϕ)

(a) Compute θ

(b) Compute \varnothing

Inverse L to Remove Ambient Light

 - Linear Additive Principle$$
I=\sum_{i=1}^{N} R^{(i)} L^{(i)} \cdots \cdots(1)
$$

Total energy received on a sensor pixel

Light energy from direction i

Reflectance field on direction i

- $R^{(i)}$ the image lit ONLY from direction i

Our Solution

- Matrix Inverse to compute R

$$
\begin{gathered}
I=\sum_{i=1}^{N} R^{(i)} L^{(i)} \cdots \cdots(1) \\
{\left[\begin{array}{cccc}
L_{1}^{(1)} & L_{1}^{(2)} & \cdots & L_{1}^{(N)} \\
L_{2}^{(1)} & L_{2}^{(2)} & \cdots & L_{2}^{(N)} \\
\vdots & \vdots & \ddots & \vdots \\
L_{N}^{(1)} & L_{N}^{(2)} & \cdots & L_{N}^{(N)}
\end{array}\right]\left[\begin{array}{c}
R^{(N)} \\
R^{(N)} \\
\vdots \\
R^{(N)}
\end{array}\right]=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right]}
\end{gathered}
$$

$L_{j}^{(i)}$ light from direction i in image j

- Compute each pixel, each color channel seperately

