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Key Contributions
I A careful analysis of the physical models of shadows
under the sun and the sky;
I A compact set of robust visual features
motivated from these physical models for shadow boundary detection;
I A end-to-end shadow boundary detection system
built upon these features, which outperforms previous methods.

Our Shadow Detection System
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New Features: Outdoor Shadow Physical Models

I Shadow caused by the Sun occlusion
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I Corresponding Penumbra Image

I Compute Penumbra Width, Shape and Color
•Penumbra width proportional to occluder height: h

cos2θ

•Similar shape for all penumbra widths (soft or sharp shadow):
illumination change rate proportional to

√√√√√√1 − (2x
w )2 − w

2 ≤ x ≤ w
2 .

•Color shifts from bluish sky to reddish sun
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I Visual features Motivated from Physical Models
•Shadow sharpness w in RGB channels
•Dark-to-bright slope
•Dark-to-bright ratio: Sky vs. Sun
•Dark-to-bright gradient direction mismatch
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Figure: Gradient of shadow edges: same direction in R,G,B in (a).
Reflectance, silhouette & other edges: any direction in (a) (b) (c).

Experiments

I Dataset and Settings:
•Two datasets: [LAL] (135 images, 100 training, 35 testing) and [ZHU]
(162 images, 100 training, 62 testing)

•Feature Vector: 12 features, each at three scales
•Classifier: SVM with RBF kernel (also compared with AdaBoost)

I Quantitative Comparison
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Comparision of ROC curve and accuracy (EER) for Imag Set Lalonde
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Ours: SVM: accuracy=81.63%, AUC=0.890
Ours: Adaboost: accuracy=78.75%, AUC=0.868
Lalonde: SVM: accuracy=77.56%, AUC=0.817
Lalonde: Adaboost: accuracy=74.06%, AUC=0.816
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Comparision of ROC curve and accuracy (EER) for Image Set Zhu
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Ours: SVM: accuracy=85.92%, AUC=0.917
Ours: Adaboost: accuracy=83.83%, AUC=0.913
Lalonde: SVM: accuracy=81.52%, AUC=0.888
Lalonde: Adaboost: accuracy=79.50%, AUC=0.878

Figure: ROC curves on dataset LAL and Zhu.

Dataset AdaBoost SVM
Ours Lalonde’s Ours Lalonde’s

LAL 78.75% 74.06% 81.63% 77.56%
ZHU 83.83% 79.50% 85.92% 81.52%

Table: Accuracy at equal error rate, compared with [LAL] in dataset [LAL] and [ZHU].

I Qualitative Comparison

Figure: Shadow labeled with red color. Compare ours (bottom) with [LAL] (top).
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