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Abstract

This thesis studies the multiple description vector quantization with lattice codebooks

(MDLVQ).

The design of index assignment is crucial to the performance of MDLVQ. However,

to our best knowledge, none of previous index assignment algorithms for MDLVQ is

optimal. In this thesis, we propose a simple linear-time index assignment algorithm

for MDLVQ with any K ≥ 2 balanced descriptions. We prove, under the assumption

of high resolution, that the algorithm is optimal for K = 2. The optimality holds

for many commonly used good lattices of any dimensions, over the entire range of

achievable central distortions given the side entropy rate. The optimality is in terms

of minimizing the expected distortion given the side description loss rate and given

the side entropy rate. We conjecture it to be optimal for K > 2 in general.

We also made progress in the analysis of MDLVQ performance. The first exact

closed form expression of the expected distortion was derived for K = 2. For K > 2,

we improved the current asymptotic expression of the expected distortion.
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Chapter 1

Introduction

1.1 Multiple Description Coding (MDC)

Almost all telecommunication traffics are now carried through data and computer

networks. A main advantage of modern packet-switched networks (Figure 1.1) is that

they offer server diversity (the possibility of providing a single source through mul-

tiple servers) and path diversity (the ability to communicate a content over different

paths from a server to a client). An information source can be communicated from

multiple servers to multiple clients via different paths in the network. This diversity-

based communication paradigm allows more efficient use of network bandwidths and

improves robustness against network congestions and channel errors. In order to

fully utilize the communication capacity of a network, information senders should

choose a network-efficient representation rather than traditional representations used

1
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ClientClientServerServer ServerPacket NetworkClientPacket-SwitchedNetwork
Figure 1.1: Modern Packet-Switched Network

in point-to-point communications. This causes a shift of the methodology of data

compression from single code stream from point A to point B via a fixed route to

distributed source coding (compression).

Multiple description coding (MDC) is a promising technique for network opti-

mized communications. In particular, it supports error resilient multimedia (image,

video, audio, graphics) communications over packet lossy networks such as the In-

ternet and wireless networks. In a packet-switched network, an MDC-coded signal

can be transmitted in multiple descriptions via different routes (channels) from one

or multiple servers to a receiver. Each description can be independently decoded to a

reconstructed signal of certain fidelity, while multiple descriptions can be jointly de-

2
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coded to reconstruct the signal at higher fidelity. The construction fidelity increases

in the number of received descriptions. By utilizing path diversity and server diver-

sity, MDC codes can weather adverse network conditions much better than single

description codes, particularly in real-time communications where retransmission is

not an option. An MDC scheme is depicted in Figure 1.2.

Server N
Route 1

Route 2

Route 3

Route 4

Route 5

Route K

Description 1

Description 2

Description 3

Description 4

Description 5

Description K

Server 2 ClientServer 1
� ��

Figure 1.2: Multiple Description Scheme.

1.2 Information Theory Perspective of MDC

Information theory is the foundation of modern digital communications. Shannon

first introduced concepts of information theory and established the famous channel

3
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coding theorem and source coding theorems in 1948 [41]. Channel coding is about re-

liable data transmission over noisy channels. The channel coding theorem defines the

channel capacity, which is the maximum information that can be transmitted without

error per channel use. Source coding is about lossless or lossy data compression. The

source coding theorems give the rate limitations of data compression. In lossless case,

the lowest rate is the entropy of the source. In lossy case, the rate-distortion function

bounds the lowest rate needed for given distortion.

1.2.1 Introduction to Rate Distortion Theory

MDC generates multiple approximate representations of sources such as image, audio

and videos. There is a tradeoff between the lengths of representations (bit rates)

and the quality of approximations (distortions). Rate distortion theory discusses the

achievable region of rates and distortions. We restate basic concepts of rate distortion

theory in this section. For a more systematic treatment of the subject, please refer

to Cover and Thomas’s book [9].

Assume that a source produces a sequence of independent identically distributed

(i.i.d.) random variables X1, X2, · · · , Xn. An encoder f maps a source vector xn =

(x1, x2, · · · , xn) to an index (or codeword) f(xn) ∈ {1, 2, · · · , 2nR}, where R is bit

rate per symbol. A decoder g maps an index from {1, 2, · · · , 2nR} to a reproduction

sequence x̂n = g(f(xn)).

The distortion measure d(x, x̂), which is non-negative, evaluates the approxima-

4
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tion between the source sample x and its reproduction x̂. The most popular distor-

tion measure is the squared error measure d(x, x̂) = (x − x̂)2 due to its simplicity

and its relationship to least square prediction. The distortion between sequences

xn = (x1, x2, · · · , xn) and x̂n = (x̂1, x̂2, · · · , x̂n) is defined as the average distortion

per symbol, that is

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i).

The distortion associated with the source code (f, g) is defined as the expected dis-

tortion between the source and the reproduction:

D = E[d(Xn, X̂n)] = E[d(Xn, g(f(Xn)))].

A rate distortion pair (R, D) is said to be achievable if there exits a source code

(f, g) with rate R and distortion D for some positive integer n. The closure of the

set of achievable rate distortion pairs (R, D) is called the rate distortion region. The

rate distortion function R(D) is the infimum of all rates R such that (R,D) is in the

rate distortion region for a given D. In dual, the distortion rate function D(R) is

the infimum of all distortions D such that (R, D) is in the rate distortion region for

a given R.

The main theorem of rate distortion theory states that [9]

R(D) = min
p(x̂|x):

P
p(x)p(x̂|x)d(x,x̂)6D

I(X; X̂), (1.1)

where the mutual information I(X; X̂) is defined as

I(X; X̂) ,
∑

x,x̂

p(x, x̂) log
p(x, x̂)

p(x)p(x̂)
. (1.2)

5
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Generally, the rate distortion region is very hard to obtain. For a Gaussian memo-

ryless (i.i.d.) source with variance σ2, the rate distortion function with squared error

measure is given by:

R(D) =





1

2
log

σ2

D
, 0 ≤ D ≤ σ2,

0, D > σ2,

(1.3)

and the inverse distortion-rate function is:

D(R) = σ22−2R. (1.4)

The Gaussian source is the most difficult source to compress. Among different

sources with the same variance, the Gaussian source requires the greatest number of

bits to achieve the same distortion. For a memoryless continuous-valued source with

variance σ2 and differential entropy h(p), its distortion rate function with squared

error criteria is bounded by [42, 3]:

1

2πe
22h(p)2−2R ≤ D(R) ≤ σ22−2R, (1.5)

where the differential entropy h(p) is determined by the source probability density

function p(x),

h(p) ,
∫

p(x) log2 p(x)dx. (1.6)

For a memoryless Gaussian sources with variance σ2, we have:

h(p) =
1

2
log(2πeσ2). (1.7)

For a memoryless source other than memoryless Gaussian source, the Shannon

lower bound (2πe)−122h(p)2−2R is generally strictly less than D(R) of all R > 0, but

6
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it becomes asymptotically tight in the high rate limit [3, 32]:

lim
R→∞

D(R) =
1

2πe
22h(p)2−2R. (1.8)

The rate distortion function is often determined by assuming very long block

length for encoder, which is not possible in practical codes. However, it is a good

analysis of what we can achieve.

1.2.2 Multiple Description Rate Distortion Region

In MDC, each description is associated a rate and each combination of descriptions

is associated a distortion. For a K description system, there are K rate parameters

and 2K−1 distortion parameters corresponding to 2K−1 combination of descriptions

(the case of no description received is trivial). So the rate distortion region for a K

description MDC has K + 2K − 1 dimensions, which is very hard to obtain for large

K. For simplicity, it is often assumed that the number of descriptions is two, and the

multiple description rate distortion region (MD region) is the closure of the sets of

achievable rate distortion quintuples (R1, R2, D1, D2, Dc).

El Gammal and Cover [16] presented an achievable rate distortion region for two

description system, which will be referred as the EGC region. The EGC region

is not tight: it is not the entire MD region. Zhang and Berger [58] proved there

were achievable rate distortion quintuples outside the EGC region, and the EGC

region is tight for the case of no excess rate for the joint description, which is when

Dc = D(R1 + R2). They also provided an improved achievable rate distortion region.

7
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Goyal et al. [52] extended the regions of [16, 58] to more than two descriptions.

Regions given in [16, 58, 52] generally do not give the entire MD region.

The entire MD region has been known only for Gaussian memoryless sources with

squared error measure. The region is first given by Ozarow [37] and is referred to

as the Ozarow MD region. Similar to single description, the MD region for any

continuous memoryless source with squared error measure can be bounded by the

MD region for Gaussian source [57].

For a Gaussian memoryless sources with unit variance and squared error measure,

the Ozarow MD region is given by:

D1 ≥ 2−2R1 , (1.9)

D2 ≥ 2−2R2 , (1.10)

Dc ≥ 2−2(R1+R2)γ, (1.11)

where γ is defined as:

γ ,





1, if Π ≤ ∆

1

1− (
√

Π−√∆)2
, if Π > ∆

, (1.12)

for

Π , (1−D1)(1−D2)

∆ , D1D2 − 2−2(R1+R2).

In the balanced case, where D1 = D2 , Ds and R1 = R2 , R, we plot the Ozarow

MD region in Figure 1.3. The Ozarow MD region shows some interesting properties

8
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of the achievable MDC performance. At the low side distortion range of the curve, a

small increase in side distortion gains a large reduction in central distortion. Similarly,

at the low central distortion range of the curve, a small increase in central distortion

obtains a large reduction in side distortion.

Three extreme cases will clarify the behavior of the Ozarow MD region. First,

consider the balanced case. If each description is individually optimal so that the

two side distortions are minimized, that is, D1 = D2 = 2−2R, then (1.11) becomes

Dc ≥ Ds

2−Ds
. The achievable central distortion can not be better than half of the side

distortion. For any interesting value of Ds ¿ 1, this is much greater than the optimal

central distortion Dc = D2
s obtained by (1.4).

The opposite extreme case is when the central distortion is optimized, that is,

Dc = 2−2(R1+R2). The optimal central description can be achieved only when Π ≤ ∆

for γ = 1, which leads to D1+D2 ≥ 1+Dc. So in this case the two side descriptions can

not both be optimal: if one side distortion is small (not even necessarily optimal), the

other side distortion has to be close to 1, which can be achieved without transmitting

any bit in single description system. In the balanced case, both side descriptions need

to satisfy Ds ≥ 1+Dc

2
, so neither of them can be optimal.

The high-rate case is often studied in information theory for simplification of rate

distortion analysis. Under the assumption that R1 = R2 , R À 1 and D1 = D2 ,

Ds ≈ 2−2R(1−a) with a ∈ (0, 1), we have γ ≈ 1
4Ds

and Dc ≥ 1
4
2−2R(1+a). Thus inequality

9
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Figure 1.3: The Ozarow MD region for two balanced descriptions.

(1.11) gives

lim
R→∞

DcDs ≥ 1

4
2−4R. (1.13)

So in the high-rate balanced case, the product of the central distortion Dc and the

side distortion Ds is approximately constant for given R.

1.3 MDC Design Methods

The simplest idea to produce multiple descriptions of the source is by downsampling.

We can separate the source into two streams. For instance, odd samples are transmit-

ted over one channel and even samples the other channel. This method was studied

10
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at Bell Laboratories [29] to transmit speech signals on unreliable phone links in 1970s.

The practical speech signal is bandlimited to 3.2 kHz and sampled at 8 kHZ. In [29],

the initial sampling is at 12 kHz and the downsampling by factor two results only

little aliasing. However, this method assume there is redundancy between source

samples. But modern compression systems tend to remove redundancy by prediction

or decorrelation at the beginning. In these systems, the method by downsampling

has poor performance.

Good MDC techniques should not solely rely on the redundancy of the source.

They should also be able to introduce different levels of correlation among descrip-

tions by balancing the distortions of central decoder and side decoder according to

network statistics. As discussed earlier, the central distortion and side distortion can

not achieve minimums simultaneously. Individually optimized descriptions are close

to each other and contain a lot of common information, therefore combining those

descriptions does not give much performance improvement. To make significant cod-

ing gains (lower central distortion) by combining descriptions, different descriptions

should contain different information. This implies not all side quantizers can be

optimal. A good practical MDC design should produce individually good side de-

scriptions, and at the same time make them different enough to produce a good

joint decoder. To balance the performance of central and side decoders, some linear

combination of central and side distortions is typically used. The weights can be prob-

abilities of receiving combinations of descriptions. Thus a good MDC design method

11
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should be able to provide the flexibility to optimize for different weights according to

different network conditions.

Multiple description codes can be generated by three categories of techniques:

quantization, correlating transforms [34, 23, 1, 31], and erasure error correction

coding [39, 38]. This thesis is concerned with the first category, which includes

MDC approaches based on scalar quantization [48, 50, 43, 44], on trellis coded

quantization [28, 53], and on vector quantization [15, 5]. Of particular interest to

us is approach of multiple description vector quantization with lattice codebooks

[40, 10, 51, 11, 30, 22, 46, 35, 36]. Readers can refer to the survey paper of MDC by

Goyal [21] for more details on current MDC methods.

1.3.1 MDC by Quantization

The first practical design of multiple description quantizer was the multiple descrip-

tion scaler quantizer (MDSQ) proposed by Vaishampayan in 1993 [48]. His method

allows flexible adjustment of the weighting between central and side distortions. The

key mechanism of Vaishampayan’s technique is an index assignment (IA) scheme. In

the case of two descriptions, the IA scheme labels each codeword of central quan-

tizer by a pair of indices, one for each side quantizer. The process of MDSQ first

quantizes a signal sample to a central quantizer codeword, then via index assignment

maps this codeword to a pair of side quantizer indices. The two indices are encoded

by fixed-length code in [48], so the corresponding scheme is called fixed-rate MDSQ.

12



1.3 MDC Design Methods M.A.Sc. - X. Huang - McMaster - ECE

The indices can also be encoded by a variable length code [50], the corresponding

scheme is called entropy-constrained MDSQ.

For the single description problem, one of the most important results of the quan-

tization theory is that vector quantization is more efficient than scalar quantization,

even if the source samples are independent random variables. Why is encoding inde-

pendent random variables independently not efficient? The answer lies in geometry.

In higher dimensions it is possible to construct Voronoi cells that are more spherical

than the hypercube. Thus vector quantization offers higher efficiency in space filling,

achieving smaller granular distortion than scalar quantization. Through an argument

of random quantization [56], it is shown that there exist vector quantizers that ap-

proach the rate distortion bound in (1.8). However, uniform scalar quantization with

entropy coding at rate R bits per sample has mean squared error[19]

lim
R→∞

D(R) =
1

12
22h(p)2−2R. (1.14)

Thus pontential gain of using vector quantization instead of scalar quantization is 2πe
12

,

which is well known as the 1.53 dB gain. ( 1
12

and 1
2πe

are respectively the normalized

second moments of spheres in one dimensional and infinite dimensional Euclidean

spaces.)

Similar to single description system, granular distortion can be reduced by using

vector quantization instead of scalar quantization in multiple description system. An

high-rate analysis for fixed-rate MDSQ and entropy-constrained MDSQ with uniform

central quantizer cells is presented in [47]. In terms of the product of central and

13
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side distortions, there is a gap of 8.69 dB between the fixed-rate MDSQ and the

information theory bound of MDC shown in (1.13). For the entropy-constrained

MDSQ, the gap shrinks to 3.07 dB. Tian et al. proved that by using nonuniform

rather than uniform central quantizer cells, the product of central and side distortion

can be reduced by 0.4 dB for both fixed-rate and entropy-constrained MDSQ at

high rate [45] . These gaps can be closed and the MDC rate distortion bound can

be achieved by multiple description vector quantization (MDVQ) with infinite block

length [49].

Specifically, for a memoryless source with differential entropy h(p), an entropy-

constrained MDSQ with uniform central quantizer cells can achieve [47]

lim
R→∞

Dc(R) =
1

4
· 1

12
22h(p)2−2R(1+a)

lim
R→∞

Ds(R) =
1

12
22h(p)2−2R(1−a),

(1.15)

where a ∈ (0, 1) is a parameter that determines the trade off between the central and

side distortions. In contrast, by encoding vectors of infinite block length, it is possible

to achieve [49]

lim
R→∞

Dc(R) =
1

4
· 1

2πe
22h(p)2−2R(1+a)

lim
R→∞

Ds(R) =
1

2πe
22h(p)2−2R(1−a).

(1.16)

Thus MDVQ reduces both side distortion and central distortion by 1.53dB from

MDSQ.

Theoretically, MDVQ with infinite encoding block length can achieve the MDC

rate distortion bound. Unfortunately, optimal MDVQ design is computationally in-

14
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tractable (optimal single-description vector quantization design is already NP-hard

[17], which means the computing time for the optimal vector quantizer increases ex-

ponentially as the number of codewords increases). To overcome this operational

difficulty, a practical and promising way is to use lattice codebooks in vector quanti-

zation design [40, 10, 51, 11, 30, 22, 46, 35, 36], which is the case examined by this

thesis.

1.3.2 Multiple Description Lattice Vector Quantization (MDLVQ)

A lattice is a regular arrangement of points in space. The motive of using a lattice

codebook for vector quantization is to have fast encoding and decoding algorithms

[6, 7].

The idea of MDVQ with lattice codebooks was first proposed by Servetto, Vaisham-

payan and Sloane in 1999 [40], which was often referred as SVS-MDLVQ. The further

development and performance analysis of SVS-MDLVQ were presented in [51]. For a

memoryless source with differential entropy h(p), the central and side distortions of

L-dimensional balanced two-description MDLVQ are:

lim
R→∞

Dc(R) =
1

4
GΛ22h(p)2−2R(1+a)

lim
R→∞

Ds(R) = GL22h(p)2−2R(1−a)

, (1.17)

where GΛ is the normalized second moment of a Voronoi cell of the lattice Λ, GL is the

normalized second moment of an L-dimensional sphere, and a ∈ (0, 1) is a parameter

that determines the trade off between the central and side distortions. Thus the gain
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of MDLVQ over MDSQ is GΛ/G1 in central distortion, which depends on the lattice,

whereas the gain in side distortion is GL/G1, which is independent of the lattice.

Similar to the two-description MDSQ scheme in [48, 50], a K-description MDLVQ

scheme has two steps: the first step quantizes a source vector to a fine (central) lattice

Λ, the second step, via an index assignment (also known as labeling function) α, maps

each fine lattice point λ ∈ Λ to an ordered K-tuple (λ1, λ2, · · · , λK) ∈ ΛK
s , where Λs

is a coarse lattice. The problem of optimal MDLVQ design involves choosing a lattice

Λ for central description and a coarse lattice Λs (typically Λs ⊂ Λ, so Λs is also called

sublattice) for side descriptions, and establishing a one-to-one mapping α between a

point λ ∈ Λ and an ordered K-tuple (λ1, λ2, · · · , λK) ∈ ΛK
s . Given the dimension

of source vectors, lattices Λ and Λs can be selected from the known optimal and/or

near-optimal lattice vector quantizers (e.g., those tabulated in [8]), which have been

thoroughly investigated. Therefore, the key issue in optimal MDLVQ design is to

find the bijection function α : Λ ↔ α(Λ) ⊂ ΛK
s that minimizes a distortion measure

weighted over all possible channel scenarios. This is referred to as the optimal MDLVQ

index assignment problem, which is the central theme of this thesis.

The SVS-MDLVQ scheme discussed in [40, 51] was for two balanced descriptions.

It is extended to two asymmetric (unbalanced) descriptions in [10, 11]. Kelner,Goyal

and Kovačević [30, 22] (KGK-MDLVQ) pointed out the encoding of SVS-MDLVQ

was inherently optimized for the central decoder, and the performance can be im-

proved by modifying the encoder and using non-lattices for central decoder (obtained
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by slightly modifying the lattices with local training) to minimize the average to-

tal distortion. However, the increased complexity by using non-lattices makes the

KGK-MDLVQ only feasible for small side-central distortion ratio. Zhao and Kleijin

[59] improved the perfomance of KGK-MDLVQ by using a lattice Λs for one side

description and the translation of Λs for the other side description, while the central

description codebook is locally trained similarly to KGK-MDLVQ. Tian and Hemami

[46] proposed a scheme which favors side quantizers by letting one side quantizer use

a lattice codebook, and the other side quantizer use a codebook based on the same

lattice with a slight shift. The central quantizer cells is the intersection of Voronoi

cells of side quantizers, and a successive refinement stage can be used to further re-

duce the central distortion. Østergaard et al. [35, 36] extended the SVS-MDLVQ to

K ≥ 2 balanced descriptions and presented some asymptotical performance results.

1.4 Contribution and Organization of this Thesis

The design of index assignment is crucial to the performance of the multiple descrip-

tion quantizers. A great deal of efforts were given to optimal IA design, such as the

recent works on MDSQ [4, 2], on MDVQ [20], and on MDLVQ [51, 11, 35]. However,

to our best knowledge, none of previous IA algorithms is optimal.

The seminal paper of [51] studied the index assignment problem for K = 2 bal-

anced MDLVQ in considerable length, and proposed a “guiding principle” for con-

structing an optimal index assignment for two balanced descriptions. Based on the
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guiding principle a good index assignment was given for two balanced descriptions

in the A2 lattice. However, its optimality remained unproven even for the specific

instances of MDLVQ. More recently, Ostergaard et al. studied the problem of opti-

mal index assignment for K ≥ 2 balanced MDLVQ, and presented some asymptotical

results [35]. The only known solution of optimal MDLVQ index assignment is a linear

assignment algorithm about finding a bijective mapping between two infinite sets Λ

and ΛK
s . No good solutions are known to reduce the underlying bipartite graph to

a modest size without missing optimal solution. The optimal index assignment algo-

rithm by linear assignment in [35, 36] has extremely high complexity (O(N5) (N is the

sublattice index, which is defined as the ratio of the point densities of central lattice

and sublattice) as shown in Section 3.4), and still with no optimality guaranteed.

In this thesis we propose a simple linear-time index assignment algorithm for

MDLVQ with any K ≥ 2 balanced descriptions, and then prove, under the assumption

of high resolution, that the algorithm is optimal for K = 2 on many commonly

used good lattices of any dimensions. The optimality holds over the entire range of

achievable central distortions given the side entropy rate, in terms of minimizing the

expected distortion given the side description loss rate and given the side entropy

rate. We conjecture it to be optimal for K > 2 in general. Our results are partly

presented in Data Compression Conference 2006 at Snowbird, UT [27].

For the A2 lattice, the resulting optimal index assignment outperforms the best

scheme known so far [51]. Also, for the one-dimensional Z lattice, the optimal index
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assignment exhibits the same structures as those suggested first by Vaishampayan

for two-description continuous scalar quantization [48], and now widely cited in the

literature.

The thesis is structured as follows. After formulating the problem and introducing

necessary notations in the next chapter, we propose in Chapter 3 an index assignment

algorithm. We analyze the complexity and prove the optimality of the proposed

algorithm, and discuss optimal sublattice index N with respect to the probability of

description loss in Chapter 3. Chapter 4 presents some new and improved closed form

expressions of the expected distortion of optimal MDLVQ, which allow the optimal

parameters N and K to be computed. Chapter 5 discusses the codecell convexity of

multiple description scalar quantizers, and Chapter 6 concludes.
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Chapter 2

Preliminaries

As preparation for presenting our work on multiple description lattice vector quan-

tization, we briefly review mathematical structures of lattices, introduce the K de-

scription MDLVQ scheme, derive the rate and distortion expressions of MDLVQ, and

formulate the optimal index assignment problem.

2.1 Lattice Vector Quantizer

A lattice Λ in L-dimensional Euclidean space is a discrete set of points. It is defined

as

Λ , {λ ∈ RL : λ = uG, u ∈ ZL}, (2.1)

that is, the set of all possible integral linear combinations of the rows of a matrix G.

The L× L matrix G is called a generator matrix for the lattice. It is full rank.

We define < x, y > as the dimensional-normalized inner product of the L dimen-
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sional vectors x and y:

〈x, y〉 =
1

L

L∑
i=1

xiyi.

The Voronoi cell of a lattice point λ ∈ Λ is defined as

V (λ) , {x ∈ RL : ‖x− λ‖ 6 ‖x− λ̃‖,∀λ̃ ∈ Λ}, (2.2)

where ‖x‖2 = 〈x, x〉 is the dimension-normalized norm for vector x.
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(a) Hexagonal lattice A
2
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3

(b) Integer lattice Z
2

Figure 2.1: Two dimensional lattices A2, Z
2 and their Voronoi cells.

Figure 2.1 shows examples of hexagonal lattices A2 and square lattice (two dimen-

sional integer lattice) Z2. The generator matrix for A2 lattice is

G =




1 0

−1
2

√
3

2


 , (2.3)

and for Z2 lattice is

G =




1 0

0 1


 . (2.4)
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All the Voronoi cells of a lattice Λ are congruent. Let ν be the L-dimensional

volume of a Voronoi cell . The dimensionless normalized second moment of a lattice

Λ is defined by [8]

GΛ , 1

ν1+2/L

∫

V (0)

‖x‖2 dx. (2.5)

GΛ does not depend on the size a Voronoi cell. It only depends on the shape of a

Voronoi cell. Thus it is a good evaluation of how sphere like a Voronoi cell is.

A vector quantization scheme with a lattice codebook is called lattice vector quan-

tization [24, 18]. In an L-dimensional lattice vector quantization scheme with code-

book Λ, the source samples are first blocked into L-dimensional random vectors, then

any random vector x ∈ RL is quantized to its nearest lattice point λ ∈ Λ. The average

distortion per dimension of the lattice vector quantizer is given by

dc =
∑

λ∈Λ

∫

V (λ)

‖x− λ‖2 pL(x)dx, (2.6)

where pL(x) is the L-fold probability density function (pdf). Under the standard high

resolution assumption, each Voronoi cell is small such that pL(x) is approximately

constant in each Voronoi region, thus [8]

dc ≈ GΛν2/L. (2.7)

2.2 K description MDLVQ

Now we are ready to present the K description MDLVQ scheme. In a K-description

MDLVQ, an input vector x ∈ RL is first quantized to its nearest lattice point λ ∈ Λ,
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where Λ is a fine lattice. Then the lattice point λ is mapped by a bijective labeling

function α to an ordered K-tuple (λ1, λ2, · · · , λK) ∈ ΛK
s , where Λs is a coarse lattice

and ΛK
s is the Cartesian product of K coarse lattices (ΛK

s , Λs×Λs× · · · ×Λs). Let

the components of α be (α1, α2, · · · , αK), i.e., αk(λ) = λk, 1 ≤ k ≤ K. With the

function α the encoder generates K descriptions of x: λk, 1 ≤ k ≤ K, and transmits

each description via an independent channel to a receiver.

If the decoder receives all K descriptions, it can reconstruct x to λ with the inverse

labeling function α−1. If the decoder receives no descriptions, it reconstructs x by its

expected value E[X]. In general, due to channel losses, the decoder receives only a

subset χ of the K descriptions, then it can reconstruct x to the average of the received

descriptions:

x̂ =
1

|χ|
∑

λi∈χ

λi.

Note the optimal decoder that minimizes the mean square error should decode x to

the centroid of the points λ ∈ Λ whose corresponding components α(λ) equal to χ.

But decoding to the average of received descriptions is easy for design [35]. It is also

asymptotical optimal for two description case as shown in [51].

A two description MDLVQ system is schematically depicted in Figure 2.2.

2.2.1 Central Lattice and Sublattice

There are two lattices used in the MDLVQ system. The fine lattice Λ is the code

book for the central decoder when all the descriptions are received, thus is called
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λ α
1λ

2λ

Channel 1

Channel 2

Decoder 0

Decoder 1

Decoder 2

-1α
x

Q

1λ

2λ

1 1x̂ λ=

2 2x̂ λ=

0x̂ λ=

Figure 2.2: MDLVQ scheme with two channels and three receivers.

central lattice. The coarse lattice Λs is the code book for a side decoder when only

one description is received. Typically, Λs ⊂ Λ, hence Λs is called a sublattice. The

ratio of the point densities of Λ and Λs (which is equal to the ratio of the volumes

of the Voronoi cells of Λs and Λ) is defined as the sublattice index N . When no

central lattice points lie on the boundary of a sublattice Voronoi cell (this is called

that the sublattice is clean), N is equal to the number of central lattice points inside

a sublattice Voronoi cell. Sublattice index N governs trade-offs between the side and

central distortions. We assume that Λs is geometrically similar to Λ, i.e., Λs can be

obtained by scaling, rotating, and possibly reflecting Λ [8]. For simplicity, we will

usually assume reflections are not used when we mention Λs is geometrically similar

to Λ. Figure 2.3 is an example of hexagonal lattice and its sublattice with index

N = 31.

Let G and Gs be generator matrices for L-dimensional central lattice Λ and sublat-

tice Λs. Then Λs is geometrically similar to Λ if and only if: there exist an invertible

L × L matrix U with integer entries, a scalar β, and an orthogonal L × L matrix A
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Figure 2.3: Hexagonal lattice A2 and its sublattice with index N = 31. Central lattice

points are marked by small dots, and sublattice points by big dots.

with determinant 1 such that

Gs = UG = βGA, (2.8)

The index for a geometrically similar lattice is N = detGs

detG
= βL.

In Figure 2.3, the generator matrix for Λ is denoted in (2.3), β =
√

31 and

Gs =




11
2

−
√

3
2

−2 3
√

3


 , U =




5 −1

1 6


 , A =

1

2
√

31




11 −√3

√
3 11


 .

2.2.2 Rate of MDLVQ

Assume a information source generates a sequence of independent identically dis-

tributed (i.i.d.) random variables with pdf p. The differential entropy rate per di-

mension of the source is

h(p) =

∫
p(x) log2 p(x)dx. (2.9)
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The source samples are blocked into L-dimensional vectors x = (x1, x2, · · · , xL). The

L-fold pdf is

pL(x) =
L

Π
i=1

p(xi). (2.10)

In MDLVQ, a source vector x is quantized to its nearest fine lattice λ ∈ Λ. The

probability of quantizing to a lattice λ is

P (λ) =

∫

V (λ)

pL(x)dx. (2.11)

We denote by Q(x) = λ the quantization mapping. The entropy rate per dimension

of the quantizer output is

Rc =
1

L
H(Q(x)), (2.12)

where H(ω) is the entropy function of the discrete random variable ω that takes

values in alphabet Ω with probability distribution P ,

H(ω) = −
∑
ω∈Ω

P (ω) log P (ω). (2.13)

Thus the entropy rate per dimension of the output of the central quantizer is

Rc =
1

L

∑

λ∈Λ

P (λ) log P (λ)

= − 1

L

∑

λ∈Λ

∫

V (λ)

pL(x)dx log2

∫

V (λ)

pL(x)dx

≈ − 1

L

∑

λ∈Λ

∫

V (λ)

pL(x)dx log2 pL(λ)ν

= h(p)− 1

L
log2 ν.,

(2.14)

where ν is the volume of a Voronoi cell of Λ. The approximation holds because under

high resolution the pdf pL(x) is approximately constant within an Voronoi cell V (λ).
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Let Rs be the entropy rate per dimension of an individual description. The volume

of a Voronoi cell of the sublattice Λs is νs = Nν. Similar to (2.14), we have [51]

Rs =
1

L
H(αi(Q(X))), 1 ≤ i ≤ K

≈ h(p)− 1

L
log2 νs

= h(p)− 1

L
log2(Nν).

(2.15)

The total entropy rate per dimension for the K description MDLVQ system is

Rt = KRs. (2.16)

2.2.3 Distortion of MDLVQ

Assuming that the K channels are independent and each has a probability p to fail,

we can write the expected distortion as

D =
K∑

k=0

(
K

k

)
(1− p)kpK−kDk,

where Dk is the expected distortion when receiving k out of K descriptions.

For the case of all descriptions received, we have DK = dc which is denoted by

(2.7). For the case of no descriptions received, we have D0 = E[‖X‖2]. For the

case of only one description received, D1 = 1
K

∑K
i=1 di, where di is the expected side

distortion when only description i is available, that is [51]

di =
∑

λ∈Λ

∫

V (λ)

‖x− λi‖2 pL(x)dx

=
∑

λ∈Λ

∫

V (λ)

(‖x− λ‖2 + ‖λ− λi‖2 + 2〈x− λ, λ− λi〉
)
pL(x)dx

≈ dc +
∑

λ∈Λ

‖λ− λi‖2 P (λ), 1 ≤ i ≤ K

(2.17)
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The approximation holds because under high resolution assumption λ is the centroid

of V (λ), thus the term
∫

V (λ)
〈x−λ, λ−λi〉pL(x)dx ≈ 0 . Hence the expected distortion

when receiving one description is

D1 =
1

K

K∑
i=1

di

= dc +
∑

λ∈Λ

1

K

K∑
i=1

‖λ− λi‖2 P (λ).

(2.18)

We denote by mK the centroid of all K descriptions λ1, λ2, · · · , λK , that it,

mK , 1

K

K∑

k=1

λk. (2.19)

Then we have the following equation

1

K

K∑
i=1

‖λ− λi‖2 =
1

K

K∑
i=1

‖(λ−mK)− (λi −mK)‖2

= ‖λ−mK‖2 +
1

K

K∑
i=1

‖λi −mK‖2 − 2

K

〈
λ−mK ,

K∑
i=1

(λi −mK)

〉

= ‖λ−mK‖2 +
1

K

K∑
i=1

‖λi −mK‖2.

(2.20)

Substituting (2.20) into (2.18), we get

D1 = dc +
∑

λ∈Λ

(
‖λ−mK‖2 +

1

K

K∑
i=1

‖λi −mK‖2

)
P (λ). (2.21)

Now we consider the case of receiving 1 < k < K descriptions. There are
(

K
k

)

ways of receiving k out of K descriptions. We denote by I the set of all possible

combinations of taken k elements out of set 1, · · · , K. Then |I| =
(

K
k

)
. Let ι =
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(ι1, ι2, · · · , ιk) be an element of I. Under high resolution assumption, we have [35]

Dk = dc + |I|−1
∑

λ∈Λ

∑
ι∈I

∥∥∥∥∥λ− 1

k

k∑
j=1

λιj

∥∥∥∥∥

2

P (λ)

= dc +
∑

λ∈Λ

(
‖λ−mK‖2 +

K − k

(K − 1)k

1

K

K∑
i=1

‖λi −mK‖2

)
P (λ), 1 < k < K.

(2.22)

Substituting the expressions of Dk into (2.17), we arrive at

D = (1− pK)dc +
∑

λ∈Λ

(
ζ1 ‖λ−mK‖2 + ζ2

1

K

K∑
i=1

‖λi −mK‖2

)
P (λ) + pKE[‖X‖2],

(2.23)

where

ζ1 =
K−1∑

k=1

(
K

k

)
(1− p)kpK−k,

= 1− pK − (1− p)K

ζ2 =
K−1∑

k=1

(
K

k

)
(1− p)kpK−k K − k

(K − 1)k
.

(2.24)

A special case is K = 2, where ζ1 = ζ2 = 2p(1− p) and (2.23) can be simplified to

D = (1− p2)dc + p(1− p)
∑

λ∈Λ

(‖λ− λ1‖2 + ‖λ− λ2‖2) P (λ) + p2E[‖X‖2]

= (1− p2)dc + p(1− p)
∑

λ∈Λ

(
2

∥∥∥∥λ− λ1 + λ2

2

∥∥∥∥
2

+
1

2
‖λ1 − λ2‖2

)
P (λ) + p2E[‖X‖2].

(2.25)

2.3 Optimal Index Assignment Problem

Given source and channel statistics and given total entropy rate Rt, the objective of

optimal MDLVQ design is to minimize the expected distortion D by finding optimal
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description number K, choosing the best central lattice Λ and sublattices Λs (better

lattices usually can be chosen in higher dimension but the computational complexity

should also be considered), and constructing the optimal index assignment (labeling)

function α.

For given description number K and lattices Λ, Λs, we reduce the optimal MDLVQ

design problem to that of finding the optimal index assignment that minimizes

ds ,
∑

λ∈Λ

(
1

K

K∑
i=1

‖λi −mK‖2 + ζ‖λ−mK‖2

)
P (λ), (2.26)

where

ζ , ζ1

ζ2

=

∑K−1
k=1

(
K
k

)
(1− p)kpK−k

∑K−1
k=1

(
K
k

)
(1− p)kpK−k K−k

(K−1)k

.

(2.27)

When K = 2, the objective distortion function can be simplified as:

ds =
∑

λ∈Λ

(
1

4
‖λ1 − λ2‖2 +

∥∥∥∥λ− λ1 + λ2

2

∥∥∥∥
2
)

P (λ). (2.28)
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Chapter 3

Index Assignment Algorithm

This section presents a greedy index assignment algorithm for MDLVQ of K ≥ 2

balanced descriptions. We first reveal some useful lattice structures to be exploited

by the index assignment algorithm. Then we describe the greedy index assignment

algorithm, analyze its complexity, and prove its optimality for K = 2. After that,

we present a local adjustment algorithm, and conjecture that a combined use of the

greedy algorithm and the local adjustment solves the problem of optimal index as-

signment for K ≥ 2. At last we discuss an interesting S-similar property of sublattices

that is used in the optimality proof of the greedy algorithm.
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3.1 Useful Lattice Properties

In the following study of optimal index assignment for K balanced descriptions, the

lattice

Λs/K , 1

K
Λs (3.1)

plays an important role, and it will be referred as the K-fraction lattice hereafter.

The sublattice Λs is the set of all possible integral linear combinations of the rows

of its generator matrix Gs:

Λs = {λs ∈ RL : λs = uGs, u ∈ ZL}. (3.2)

Thus K-fraction lattice can be denoted by:

Λs/K = {τ ∈ RL : τ =
u

K
Gs, u ∈ ZL}. (3.3)

The K-fraction lattice Λs/K has the following interesting relations to Λ and Λs.

Property 1. m(λ1, λ2, · · · , λK) = 1
K

∑K
k=1 λk is an onto (but not one-to-one) map:

ΛK
s → Λs/K.

Proof: 1) λ1, λ2, · · · , λK ∈ Λs ⇒
∑K

k=1 λk ∈ Λs ⇒ 1
K

∑K
k=1 λk ∈ Λs/K ; 2)

∀τ ∈ Λs/K , let λ1 = Kτ, λ2 = · · · = λK = 0, then λ1, λ2, · · · , λK ∈ Λs and

m(λ1, λ2, · · · , λK) = τ .

This means that the centroid of any K-tuples in ΛK
s must be in Λs/K , and further

Λs/K consists only of these centroids.
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If two K-fraction lattice points τ1, τ2 satisfy τ1− τ2 ∈ Λs, then we say that τ1 and

τ2 are in the same coset with respect to Λs. We note that any K-fraction lattice point

belong to one of the KL cosets.

Property 2. Λs/K has, in the L-dimensional space, KL cosets with respect to Λs.

Proof: Let τ1, τ2 be two K-fraction lattice points. τ1, τ2 can be expressed by

τ1 =
u

K
Gs, τ2 =

v

K
Gs,

where u = (u1, u2, · · · , uL) ∈ ZL, v = (v1, v2, · · · , vL) ∈ ZL. If and only if ui and vi

have the same remainder when divided by K for all i = 1, 2, · · · , L, then τ1 and τ2

are in the same coset with respect to Λs. Because the reminder of an integer divided

by K belongs to the K numbers: (0, 1, · · · , K − 1), the K-fraction lattice Λs/K has

KL cosets with respect to Λs.

The K-fraction lattice Λs/K partitions the space into Voronoi cells. Denote the

Voronoi cell of a point τ ∈ Λs/K by

Vs/K(τ) = {x : ‖x− τ‖ ≤ ‖x− τ̃‖ , ∀τ̃ ∈ Λs/K}.

For simplicity, we assume that the sublattice is clean, that is, no central lattice

points lie on the boundary of the Voronoi region of a sublattice point. (If the sublattice

is not clean, we need to break a tie in some prearranged manner on the boundary

of a sublattice Voronoi cell.) We can prove that no central lattice points lie on the

boundary of any Voronoi cell of the K-fraction lattice, if the sublattice is clean.
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Property 3. Λs/K is clean, if Λs is clean.

Proof: Assume for a contradiction that there was a point λ ∈ Λ on the boundary

of Vs/K(τ) for a τ ∈ Λs/K . Scaling both λ and Vs/K(τ) by K places Kλ on the

boundary of KVs/K(τ) = {Kx : ‖Kx−Kτ‖ ≤ ‖Kx−Kτ̃‖ ,∀τ̃ ∈ Λs/K}. But Kλ is

a point of Λ, and KVs/K(τ) is nothing but the Voronoi cell Vs of the sublattice point

Kτ ∈ Λs, or the point Kλ ∈ Λ lies on the boundary of Vs(Kτ), contradicting that Λs

is clean.

Property 4. Both lattices Λs and Λ are symmetric about any point τ ∈ Λs/2.

Proof: ∀τ ∈ Λs/2, we have 2τ ∈ Λs, so 2τ−λs ∈ Λs holds for ∀λs ∈ Λs; similarly,

∀τ ∈ Λs/2, we have 2τ ∈ Λ, so 2τ − λ ∈ Λ holds for ∀λ ∈ Λ.

3.2 Greedy Index Assignment Algorithm

We are now ready to introduce a greedy index assignment algorithm. We partition

the space by Voronoi cells of K-fraction lattice points. For simplicity, we assume the

sublattice is clean. (If it is not clean, the algorithm also applies, if we break a tie in

some prearranged manner on the boundary of a sublattice Voronoi cell). According

to Property 3, no point λ ∈ Λ is on the boundary of any Voronoi cell of Λs/K . To label

the central lattice points inside a Voronoi cell Vs/K(τ), we choose the |Λ ∩ Vs/K(τ)|

nearest ordered K-tuples of sublattice points that have the same centroid τ . It follows

from (2.26) that any bijective mapping between the |Λ∩Vs/K(τ)| center lattice points
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and the |Λ ∩ Vs/K(τ)| K-tuples yields the same value of ds. One can choose an

arbitrary assignment between the two sets and still minimize ds.

According to Property 2, Λs/K has KL cosets with respect to Λs in the L-

dimensional space, so there are KL classes of Vs/K(τ). We only need to label one

representative out of each class, and cover the whole space by shifting. Thus it suf-

fices to label a total of N central lattice points.

For the two description case, these |Λ ∩ Vs/2(τ)| ordered pairs are formed by the

|Λ ∩ Vs/2(τ)| nearest sublattice points to τ in Λs by Property 4. Note when τ ∈ Λs,

the ordered pair (τ, τ) should be used to label τ itself.

3.3 Examples of Greedy Index Assignment Algo-

rithm

Let us see how the greedy labeling works via examples on an A2 lattice, which are

presented graphically in Figure 3.1 and Figure 3.2. The A2 lattice Λ is generated by

basis vectors represented by complex numbers: 1 and ω = 1/2 + i
√

3/2. By shifting

invariance of A2 lattice, we only need to label the N central lattice points that are

belong to K2 Voronoi cells of Λs/K . By angular symmetry of A2 lattice, we can further

reduce the number of points to be labeled.

The first example is a two-description case, with the sublattice Λs given by basis

vectors 5 − ω, ω(5 − ω), which is geometrically similar to Λ, has index N = 31
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Figure 3.1: Optimal index assignments for A2 lattice with N = 31, K = 2. Points of

Λ, Λs and Λs/2 are marked by ·, • and +, respectively.

and is clean (refer to Figure 3.1). There are two types of Voronoi cells of Λs/2, as

shown by the solid and dashed boundaries in Figure 3.1. The solid cell is centered

at a central lattice point and contains 7 central lattice points. The dashed cell is

centered at the midpoint of the line segment OA, and contains 8 central lattice

points. To label the 7 central lattice points in Vs/2(O), we use the 7 nearest sublattice

points to O: (O,A, B,C,D, E, F ). They form 6 ordered pairs with the midpoint O :

((A,D), (D, A), (B,E), (E, B), (C,F ), (F, C), and an unordered pair (O, O) since O
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Figure 3.2: Optimal index assignments for A2 lattice with N = 73, K = 3. Points of

Λ, Λs and Λs/3 are marked by ·, • and +, respectively.

is itself a sublattice point. To label the 8 central lattice points in Vs/2(M), we use the

8 nearest sublattice points to M : (O,A, B, F, C, H, E, G). They form 8 ordered pairs

with midpoint M : (O, A), (A,O), (B, F ), (F, B), (C, H), (H,C), (E,G), (G,E).

The labeling of the 7 central lattice points in Vs/2(O) and the labeling of the 8 central

lattice points in Vs/2(M) are illustrated in Figure 3.1.

Figure 3.2 illustrates how the proposed algorithm works in the case of three de-
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scriptions. The depicted index assignment for three balanced descriptions is computed

for the sublattice of index N = 73 and basis vectors: 8− ω, ω(8− ω).

3.4 Complexity of Greedy Index Assignment Al-

gorithm

The presented MDLVQ index assignment algorithm is fast with an O(N) time com-

plexity. The simplicity and low complexity of the algorithm are due to the greedy

optimization approach adopted by it. The tantalizing question is, of course, can the

greedy algorithm be optimal? Let the distance between a nearest pair of central

lattice points in Λ be one. The result of [51] for the first example (best known so

far) is ds = 561/31 = 18.0968, while the greedy algorithm does better, producing

ds = 528/31 = 17.0323. Indeed, in both examples, one can verify that the expected

distortion is minimized as the two terms of ds in (2.26) are minimized independently.

In the next section we will prove, under fairly relaxed conditions, that our greedy

index assignment algorithm is optimal for two balanced descriptions under mild con-

ditions despite its simplicity.

The only exact algorithm known so far for optimal MDLVQ index assignment is

linear assignment. Although applying the linear assignment algorithm to optimize

the index assignment is conceptually straightforward, a key algorithmic issue that

determines the complexity remains inadequately treated. This is how to reduce the
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labeling problem from an association between two infinite sets Λ and ΛK
s to between

two finite sets, and keep these two finite sets as small as possible without compromis-

ing optimality.

Diggavi et al. proposed a technique of product sublattice to convert the index

assignment problem for two description lattice VQ to a bipartite graph matching

problem [11]. Two sublattices Λ1, Λ2, and their product sublattice of Λs are used to

construct the two description LVQ. The index assignment is obtained by a minimum

weight matching between a Voronoi set of central lattice points and a set of edges

(ordered pairs of sublattice points, one end point in Λ1 and the other in Λ2). Each set

has a cardinality of N1N2, where Nk is the index of Λk, k = 1, 2. Therefore, the index

assignment can be computed in O((N1N2)
2.5) time, given that the weighted bipartite

graph matching can be solved in O(N2.5) time [26].

Diggavi et al. only argued their index assignment algorithm to be optimal for two

description lattice scalar quantizers, but did not address the issue of optimality for

lattice vector quantizers. This technique of constructing MDLVQ using a product

sublattice was generalized from two descriptions to any K balanced descriptions by

Østergaard et al. [35]. The index assignment solution proposed by [35] seems to

require O(N5) time because it used a candidate set of O(N2) central lattice points.

Even with such a large set of candidate central lattice points, still no bound was given

on the size of the candidate K-tuples of sublattice points used for labeling, and no

proof of optimality was offered.
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3.5 Optimality of Greedy Index Assignment Algo-

rithm

In this subsection we investigate the optimality of the greedy MDLVQ index as-

signment algorithm proposed above. We start from a good natural construction of

sublattice Λs.

Definition 1. A sublattice Λs is said to be centric, if the sublattice Voronoi cell Vs(λ)

centered at λ ∈ Λs contains the N nearest central lattice points to λ.

Figure 3.1 and Figure 3.2 show two examples of centric sublattices. Also, it is

easy to see that any sublattice of Z lattice is centric.

To prove the optimality of the greedy algorithm, we first introduce some additional

properties.

Lemma 1. Assume the sublattice Λs is centric. If λ ∈ Vs/2(τ) and λ̃ 6∈ Vs/2(τ̃), where

λ, λ̃ ∈ Λ and τ, τ̃ ∈ Λs/2, then ‖λ− τ‖ ≤ ‖λ̃− τ̃‖.

Proof: Scaling both λ and Vs/2(τ) by 2 places the lattice point 2λ in Vs(2τ);

scaling both λ̃ and Vs/2(τ̃) by 2 places the lattice point 2λ̃ 6∈ Vs(2τ̃). Since a sublattice

Voronoi cell contains the nearest central lattice points, ‖2λ− 2τ‖ ≤ ‖2λ̃− 2τ̃‖, and

hence ‖λ− τ‖ ≤ ‖λ̃− τ̃‖.

Definition 2. A lattice Λs is said to be S-similar to Λ, if Λs can be generated by

scaling and rotating Λ around any point τ ∈ Λs/2 and Λs is a sublattice of Λ.
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Note the S-similarity requires that the center of symmetry be a point in Λs/2.

In what follows we assume that sublattice Λs is S-similar to Λ. Also, we denote

by Vτ the region created by scaling and rotating Vs/2(τ) around τ .

Lemma 2. If λs ∈ Vτ and λ̃s 6∈ Vτ̃ , where λs, λ̃s ∈ Λs and τ, τ̃ ∈ Λs/2, then ‖λs − τ‖ ≤

‖λ̃s − τ̃‖.

Proof: This lemma follows from Lemma 1 and the definition of S-Similar.

Lemma 3. ∀τ ∈ Λs/2, the sublattice points in Vτ form |Λ ∩ Vs/2(τ)| nearest ordered

2-tuples with their midpoints being τ .

Proof: Letting τ̃ = τ in Lemma 2, we see that Vτ contains the |Λs ∩ Vτ | =

|Λ∩Vs/2(τ)| nearest sublattice points to τ . And these sublattice points are symmetric

about τ according to Property 4. Thus this lemma holds.

Theorem 1. The proposed greedy algorithm is optimal for K = 2, if the sublattice is

centric and S-Similar to the associated central lattice.

Proof: By Property 1, for any λ1, λ2 ∈ Λs, (λ1 + λ2)/2 ∈ Λs/2. Now referring to

(2.26), the proposed algorithm minimizes the second term
∑

λ∈Λ ‖λ− (λ1 + λ2)/2‖2P (λ)

of ds, since it labels any central lattice point λ ∈ Vs/2(τ) by (λ1, λ2) ∈ Λ2
s, and

(λ1 + λ2)/2 = τ .

The algorithm also independently minimizes the first term
∑

λ∈Λ
1
4
‖λ1 − λ2‖2P (λ)

of ds. Assume that
∑

λ∈Λ ‖λ1 − λ2‖2P (λ) was not minimized. Then there exists

an ordered 2-tuple (λ̃1, λ̃2) ∈ Λ2
s which is not used in the index assignment, and
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‖λ̃1 − λ̃2‖ < ‖λ1 − λ2‖, where (λ1, λ2) ∈ Λ2
s is used in the index assignment. Let

τ = (λ1 +λ2)/2, τ̃ = (λ̃1 + λ̃2)/2. Since (λ1, λ2) is used to label a central lattice point

in Vs/2(τ), λ1, λ2 ∈ Vτ by Lemma 3. However, λ̃1, λ̃2 6∈ Vτ̃ , otherwise (λ̃1, λ̃2) would

be used in the index assignment by Lemma 3. So we have ‖λ1 − τ‖ ≤ ‖λ̃1 − τ̃‖ by

Lemma 2, hence ‖λ1 − λ2‖ ≤ ‖λ̃1 − λ̃2‖, contradicting ‖λ̃1 − λ̃2‖ < ‖λ1 − λ2‖.

Remark 1: A sublattice Voronoi cell being centric is not a necessary condition

for the optimality of the greedy algorithm. For instance, for the A2 lattice generated

by basis vectors 1 and ω = 1/2 + i
√

3/2 and the sublattice of index N = 91 that is

generated by basis vectors 9−ω, ω(9−ω), a sublattice Voronoi cell does not contain

the N nearest central lattices, but the greedy algorithm is still optimal as the two

terms of ds are still independently minimized. This is shown in Figure 3.3.

Remark 2: It is easy to choose a centric sublattice for relatively small N and in

high dimensional lattices. For instance, the sublattices of A2 lattice shown in Figure

3.1, Figure 3.2 and Table 4.1 are centric. And any sublattice of Z lattice is centric.

3.6 Local Adjustment Algorithm

Theorem 1 is concerned with when the two terms of ds in (2.26) can be minimized

independently by the greedy algorithm. While being mostly true for K = 2 as stated

by the theorem and as we saw in the two examples of Section 3.3, this may not be

guaranteed by the greedy algorithm when K > 2. Figure 3.4 presents the index

assignment generated by the greedy algorithm for K = 3 on A2 lattice. The solution
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O A

BC

D

E F

M

Figure 3.3: The greedy algorithm is optimal for N = 91, although the sublattice is not

centric. The 19 central lattice points in Vs/2(O) are labeled by the 19 nearest ordered

2-tuples with centroid O. The 24 central lattice points in Vs/2(M) are labeled by the

24 nearest ordered 2-tuples with centroid M . Let the edge length of 2-tuple (O,A) be

one: ||O−A|| , 1. The 19th (20th) nearest ordered 2-tuple with centroid O has edge

length 4 (2
√

7). The 24th (25th) nearest ordered 2-tuple with centroid M has edge

length 5 (3
√

3). Because 4 < 3
√

3 and 5 < 2
√

7, the first term of ds is minimized.

The second term of ds is minimized because the greedy algorithm partition the space

by the Voronoi cells of the K-fraction lattice.
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Figure 3.4: Index assignments (not optimal) by the greedy index assignment algorithm

for the A2 lattice with index N = 31, K = 3. Points of Λ, Λs and Λs/3 are marked

by ·, • and +, respectively.

is now suboptimal. Indeed, consider the central lattice point in Vs/3(T ) that is labeled

by OAC in Figure 3.4, changing the label from OAC to BOA will reduce ds of the

central lattice point in question. The change reduces the first term of ds, although

the second term of ds increases slightly. Note that the 3-tuple (O, A,C) has centroid

T , and the 3-tuple (B,O,A) has centroid M .

In order to make up for the loss of optimality by the greedy algorithm, we develop

a local adjustment algorithm. If a central lattice point λ is labeled by an ordered

K-tuple that has centroid τ ∈ Λs/K , we say that λ is attracted by site τ . If two
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a b

λ

( )
ab

J λ���
Figure 3.5: Remove lattice λ from site a, and add it to site b

Voronoi cells Vs/K(τ1) and Vs/K(τ2) are spatially adjacent, we say that site τ1 and site

τ2 are neighbors. In Figure 3.4, site O and site T are neighbors, while site O and site

M are not neighbors.

In Figure 3.5, assume two neighboring sites a and b attract m and n central

lattice points respectively. The m (n) central lattice points are labeled by m (n)

nearest ordered K-tuples centered at site a (b). For any point x ∈ RL, let J−→
ab

(x) be

the projection value of x onto the axis
−→
ab. Consider the set S(a) of all the m points

currently attracted by site a, and find

λmax = arg max
λ∈S(a)

J−→
ab

(λ). (3.4)

Now, introduce an operator Â (a, b) that alters the label of λmax to an ordered K-tuple

of sublattice points centered at b. The effect of Â (a, b) is that sites a and b attract

m− 1 and n + 1 central lattice points respectively, which are respectively labeled by

m− 1 and n + 1 nearest ordered K-tuples centered at site a and site b.

From the definition of side distortion ds =
∑

λ∈Λ d(λ)P (λ) in (2.26), we have

d(λ) =

(
1

K

K∑

k=1

‖αk(λ)−mK‖2

)
+

(
ζ‖λ−mK‖2) . (3.5)

Let us compute the change of d(λmax) caused by the operation Â (a, b).
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The change in the second term of d(λmax) is

ζ
(‖λmax − b‖2 − ‖λmax − a‖2)

=
ζ

L

((
J−→

ab
(λmax)− L ‖b− a‖)2 − J−→

ab
(λmax)

2
)

.

(3.6)

Note the change of the second term is positive if λmax ∈ Vs/K(a).

The change in the first term is

fb(n + 1)− fa(m), (3.7)

where fτ (i) is the ith smallest value of 1
K

∑K
k=1 ‖λk − τ‖2 over all ordered K-tuples

(λ1, λ2, · · · , λK) ∈ ΛK
s such that m(λ1, λ2, · · · , λK) = τ .

The net change in d(λmax) made by operation Â (a, b) is then

∆(a, b) = ζ
(‖λmax − b‖2 − ‖λmax − a‖2) + fb(n + 1)− fa(m). (3.8)

If ∆(a, b) < 0, then Â (a, b) improves index assignment.

The preceding discussions lead us to a simple local adjustment algorithm:

(a∗, b∗) = arg min
a neighbors b

∆(a, b);

While ∆(a∗, b∗) < 0 do

Â (a, b);

(a∗, b∗) = arg min
a neighbors b

∆(a, b).

Note that it is only necessary to invoke the local adjustment Â (a, b) if the greedy

algorithm does not simultaneously minimize the two terms of ds.

Figure 3.6 shows the result of applying the local adjustment algorithm to the

output of the greedy algorithm presented in Figure 3.4. It is easy to prove that the
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Figure 3.6: Optimal index assignments for the A2 lattice, N = 31, K = 3. Points of

Λ, Λs and Λs/3 are marked by ·, • and +, respectively.

local adjustment algorithm indeed finds the optimal index assignment for this case of

three description MDLVQ.

Finally, we conjecture that a combined use of the greedy algorithm and local

adjustment Â (a, b) solves the problem of optimal MDLVQ index assignment for any

L-dimensional lattice and for all values of K and N .
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3.7 S-Similarity

The proof of algorithm optimality in Section 3.5 requires the S-similarity of the

sublattice. In this section we show that many commonly used lattices for signal

quantization, such as A2, Z, Z2, ZL(L = 4k), and ZL (L odd), have S-similar

sublattices.

Being geometrically similar is a necessary condition of being S-Similar, but being

clean is not (For example a geometrically similar sublattice of A2 with index 21 is

S-Similar but not clean). The geometrical similar and clean sublattices of A2, Z,

Z2, ZL(L = 4k), and ZL (L odd) lattices are discussed in [11]. We will discuss the

S-Similar sublattices of these lattices in this section.

Theorem 2. For the Z lattice Λ, a sublattice Λs is S-Similar to Λ, if and only if its

index N is odd.

Proof: Staightforward and omitted.

Theorem 3. For the A2 lattice Λ, a sublattice Λs is S-similar to Λ, if it is geomet-

rically similar to Λ and clean.

Proof: Let Λs be a sublattice geometrically similar to Λ and clean. We refer to

the hexagonal boundary of a Voronoi cell in Λ (respectively in Λs) as Λ-gon (respec-

tively Λs-gon). Any point τ ∈ Λs/2 is either in Λs or the midpoint of a Λs-gon edge.

For instance, in Figure 3.1 M is both the midpoint of a Λ-gon edge and the midpoint

of a Λs-gon edge.
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If τ ∈ Λs, then τ ∈ Λ, hence scaling and rotating Λ around τ yields Λs in this

case. If τ is the midpoint of a Λs-gon edge, then τ 6∈ Λ because sublattice Λs is clean,

but τ ∈ Λ1/2, so τ is the midpoint of a Λ-gon edge, hence scaling and rotating Λ

around τ yields Λs in this case.

The ZL(L = 4l, l ≥ 1) lattice has a geometrically similar and clean sublattice with

index N , if and only if N = mL/2, where m is odd [11]. Here we show that there are

S-similar sublattices for at least half of these N values.

Theorem 4. The ZL(L = 4l, l ≥ 1) lattice Λ has an S-similar, clean sublattice with

index N , if N = mL/2 with m ≡ 1 mod 4.

Proof: We begin with the case L = 4. By Lagrange’s four-square theorem, there

exist four integers a, b, c, d such that m = a2 +b2 +c2 +d2. The matrix Gξ constructed

by Lipschitz integral quaternions {ξ = a + bi + cj + dk} [11] is

Gξ =




a b c d

−b a d −c

−c −d a b

−d c −b a




.

The lattice Λs generated by matrix Gs = Gξ is a geometrically similar sublattice of

Λ.

Let λ = u, λs = usGξ, τ = 1
2
uτGξ be a point of Λ, Λs, Λs/2 respectively, where
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u, us, uτ ∈ ZL. Then,

λs − τ = (us − 1

2
uτ )Gξ.

Let ũ = u− uτ
1
2
(Gξ − IL), where IL is an L× L identity matrix, then

λ− τ = ũ− 1

2
uτ .

Since n2 ≡ 1 mod 4 or n2 ≡ 0 mod 4 depending on whether n is an odd or even integer,

m ≡ 1 mod 4 implies that exactly one of a, b, c, d is odd. Letting a be odd and b, c, d

even, then 1
2
(Gξ− IL) is an integer matrix. Hence ũ ∈ ZL. Thus, scaling and rotating

Λ around point τ by scaling factor β = m1/2 and rotation matrix A = m−1/2Gξ yields

Λs, proving Λs is S-similar to Λ.

For the dimension L = 4l, l > 1, let the 4l× 4l generator matrix of the sublattice

Λs be

Gs =




Gξ 0 · · · 0

0 Gξ · · · ...

...
...

. . . 0

0 · · · 0 Gξ




.

Then Λs is S-similar to Λ. And according to [11], Λs is clean.

The Z2 lattice Λ has a geometrically similar sublattice Λs of index N , if and only

if N = a2 + b2, a, b ∈ Z. And a generator matrix for Λs is

Gs =




a b

−b a


 . (3.9)

Further, Λs is clean if and only if N is odd [11].
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Theorem 5. For the Z2 lattice Λ, a sublattice Λs is S-similar to Λ, if it is geomet-

rically similar to Λ and clean.

Proof: For a geometrically similar and clean sublattice Λs, its generator matrix

Gs is given by (3.9). As N = a2 + b2 is odd, a and b are one even and the other odd.

Letting a be odd and b even, by the same argument in proving Theorem 4, scaling

and rotating Λ around any point τ ∈ Λs/2 by scaling factor β = N1/2 and rotation

matrix A = N−1/2Gs yields Λs. If a is even, b is odd, scaling and rotating Λ around

any point τ ∈ Λs/2 by scaling factor β and rotation matrix Ã yields Λs, where Ã is

an orthogonal matrix:

Ã = A




0 −1

1 0


 = N−1/2




b −a

a b


 .

Theorem 6. An L-dimensional lattice Λ has an S-similar sublattice with index N ,

if N = mL is odd.

Proof: Constructing a sublattice Λs with index N = mL needs only scaling, i.e.,

Gs = mG. Let λ = uG, λs = musG, τ = 1
2
muτG be in Λ, Λs, Λs/2 respectively, where

u, us, uτ ∈ ZL. Then,

λs − τ = m(us − 1

2
uτ )G.

Let ũ = u− m−1
2

uτ , then ũ ∈ ZL, and

λ− τ = (ũ− 1

2
uτ )G.
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Thus, scaling Λ around point τ by β = m1/L yields Λs, proving Λs is S-similar to Λ.

Corollary 1. The ZL (L is odd) lattice Λ has an S-similar, clean sublattice with

index N , if and only if N = mL is odd.

Proof: By [11], Λ has a geometrically similar, clean sublattice of index N , if

and only if N = mL is odd. A sublattice Λs of this index can be obtained by scaling

Λ by m. Theorem 6 implies that Λs is S-similar to Λ.
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Chapter 4

Optimal ν, N and K

In previous discussions, the central lattice Λ and its sublattice Λs are fixed, hence the

central distortion dc which is denoted by (2.7) is fixed, and the expected distortion Dk

of receiving k (1 ≤ k < K) descriptions is determined only by the index assignment

function α (see (2.22)). The problem of finding the optimal index assignment function

α to minimize the expected distortion D at receiving side for given Λ, Λs, p and K is

discussed in the previous chapter. In this chapter, we fix Rt (the total entropy rate

of all side descriptions), and discuss the optimal ν (the volume of a Voronoi cell of

Λ), N (the sublattice index ) and K (the description number).

4.1 Numerical Results

We begin with two descriptions. According to (2.15), the total entropy rate of two

side descriptions Rt = 2h(p)− 2
L

log2(Nν). We let (Nν)1/L = 1 so that Rt is fixed.
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Lattice L GΛ Admissible N

Z 1 1
12

1, 3, 5, 7, 9, · · ·

Z2 2 1
12

1, 5, 9, 13, 17, 25, 29, 37, 41, 45, 49, · · ·

A2 2 5
36
√

3
1, 7, 13, 19, 31, 37, 43, 49, · · ·

Table 4.1: Index Values for Geometrically Similar and Clean Sublattices

0 0.002 0.004 0.006 0.008 0.01 0.012
0
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N=127

d
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d 1

Z lattice
A

2
 lattice

Figure 4.1: d1 versus dc for A2 and Z lattices, where (Nν)1/L = 1.

The sublattice index N governs the trade-off between the side and central distor-

tions. In Table 4.1, the normalized second moments of different lattices are taken

from [8], and the admissible index values for geometrical similar and clean sublattices

are taken from [11]. Figure 4.1 shows the side distortion d1 versus the central distor-

tion dc for A2 and Z lattices for different sublattice indices N . In case that there are

more than one sublattice for the same value of N , we choose the one that gives the
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best performance. One can verify that for all the values of N in the
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Figure 4.2: Optimal sublattice index values versus description loss probability, K = 2

Given the probability of description loss p and the total entropy rate Rt, we can

find the optimal sublattice index N∗ and the corresponding optimal labeling function

α∗ so that the expected distortion D in (2.23) is minimized. The optimal sublattice

index N∗ is independent of R, and depends only on p (decreasing in p). Figure 4.2

plots N∗ as a function of p for A2 and Z lattices. We see that the N∗ value remains

modest (N
2/L
∗ < 130) for a large range of p values (10−4 ≤ p ≤ 1).
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4.2 Analytical Results for K = 2 and Optimal ν, N

Up to now no closed form expression is known for the expected distortion of optimal

MDLVQ, except for asymptotic results as N → ∞ [51, 35]. However, practical

scenarios for MDLVQ usually involve modest values of N [22]. In this section, we

derive the closed form analytical expression of the expected distortion of optimal

MDLVQ with two balanced descriptions.

Theorem 7. If the sublattice is clean and S-similar, then the second term of ds

achieved by our greedy algorithm for two-description MDLVQ is

∑

λ∈Λ

‖λ−m1,2‖2 P (λ) =
1

4L

∑N
i=1 ai

N
, (4.1)

where ai is the squared distance of the ith nearest central lattice point in Vs(0) to the

origin.

Proof: Λs/2 has 2L cosets with respective to Λs in L dimensional space. Let

τ1, τ2, · · · , τ2L be representatives of each coset. For example, when L = 2, τ1 =

(0, 0)Gs, τ2 = (0, 1
2
)Gs, τ3 = (1

2
, 0)Gs, τ4 = (1

2
, 1

2
)Gs. We denote by Vλ(τ) , Vs/2(τ)

⋂
Λ

the set of central lattice points in the Voronoi cell of a 2-fraction lattice τ . We first

prove that

2 (Vλ(τi)− τi) ∩
i6=j

2 (Vλ(τj)− τj) = ∅. (4.2)

2L

∪
i=1

2 (Vλ(τi)− τi) = Vs(0) ∩ Λ. (4.3)

Assume that (4.2) does not hold. Then there exist λi ∈ Vλ(τi), λj ∈ Vλ(τj) such

that λi − τi = λj − τj. Let τ0 = τi − τj, then τ0 ∈ Λs/2. We also have τ0 = λi − λj, so
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τ0 ∈ Λ. The sublattice Λs is S-similar to Λ, so properly rotating and scaling Λ around

the 2-fraction lattice point τ0 can generate Λs. Rotating and scaling the central lattice

point τ0 (remember τ0 ∈ Λ) around τ0 itself always generates τ0, so τ0 = τj − τj ∈ Λs,

contradicting τi and τj are in different cosets with respect to Λs. Thus (4.3) holds.

To prove (4.3), we first show that for any τ ∈ Λs/2,

2(Vλ(τ)− τ) = 2
(
Vs/2(τ) ∩ Λ

)− 2τ = Vs(2τ) ∩ (2Λ)− 2τ
(a)

⊆ Vs(0) ∩ Λ. (4.4)

Step (a) holds because 2τ ∈ Λ and Vs(2τ)− 2τ = Vs(0). So we have

2L

∪
i=1

2 (Vλ(τi)− τi) ⊆ Vs(0) ∩ Λ. (4.5)

According to Property 3, no central lattice points lie on the boundary of a K-fraction

Voronoi cell when the sublattice is clean, so ∪2L

i=1 Vλ(τi) contain N different central

lattice points. According to (4.2), the set ∪2L

i=1 2 (Vλ(τi)− τi) has N different elements.

Because the set Vs(0) ∩ Λ also has N different elements and ∪2L

i=1 2 (Vλ(τi)− τi) ⊆

Vs(0) ∩ Λ, (4.3) holds.

Finally, according to (4.2) and (4.3),

∑

λ∈Λ

‖λ−m1,2‖2 P (λ) =
1

4

∑

λ∈Λ

‖2λ− 2m1,2‖2 P (λ)

(a)
=

1

4N

4∑
i=1

∑

λ∈Vλ(τi)

‖2λ− 2τi‖2

=
1

4N

∑

λ∈Vs(0)∩Λ

‖λ‖2

=
1

4L

∑N
i=1 ai

N
.

(4.6)
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Equality (a) holds because under high resolution assumption, P (λ) is the same for

each central lattice point λ ∈ ∪2L

i=1 Vλ(τi).

Theorem 8. If the sublattice is clean, S-similar and centric, then the closed form

expected distortion D of optimal two-description MDLVQ is

D = (1− p2)GΛν2/L +
1

2
p(1− p)L−1(1 + N2/L)N−1

N∑
i=1

ai + p2E[‖X‖2]. (4.7)

Proof: If the sublattice is clean, S-similar and centric, the greedy algorithm is

optimal according to Theorem 1. The first term of ds is N2/L times the second term

of ds achieved by our optimal greedy algorithm. Combining with Theorem 7, the first

term of ds is

∑

λ∈Λ

1

4
‖λ1 − λ2‖2 P (λ) =

N2/L

4L

∑N
i=1 ai

N
. (4.8)

Substituting (2.7), (4.1) and (4.8) into (2.25), we get the closed form expression of

the expected distortion D in (4.7).

The above equations lead to some interesting observations. When the sublattice

is centric, ai is also the squared distance of the ith nearest central lattice point to the

origin. The term N2/LN−1
∑N

i=1 ai is the average squared distance of the N nearest

sublattice points to the origin, which was also realized by previous authors [51]. The

other term N−1
∑N

i=1 ai is the average squared distance of central lattice points in

Vs(0) to the origin.

The optimal ν and N for a given entropy rate of side descriptions can be solved

by combing (4.7) and Rs = h(p) − 1
L

log2 Nν (shown in (2.15)), rather than solving

many instances of index assignment problem for varying N .

58



4.3 Asymptotical Results for K ≥ 2 and Optimal ν, N,K M.A.Sc. - X. Huang - McMaster - ECE

4.3 Asymptotical Results for K ≥ 2 and Optimal

ν, N, K

In this section, we will see that our greedy index assignment is asymptotically optimal.

Using the greedy index assignment, we derive a closed form expression of the expected

distortion of optimal MDLVQ for general K ≥ 2 asymptotically (N → ∞). Our

result improves a similar formula presented in [35, 36] that includes an empirically

determined constant. It also allows us to determine the optimal volume of a central

lattice Voronoi cell ν, the optimal sublattice index N , as well as the optimal number

of descriptions K.

Let Nτ denote the number of central lattice points in Vs/K(τ). As N →∞, each

Voronoi cell of Λs/K contains approximately Nτ ≈ N/KL central lattice points, which

are uniformly distributed in Vs/K(τ) which has volume Nτν. Hence the second term

of ds is

ζ
∑

λ∈Λ

‖λ−mK‖2 P (λ) = ζGΛ(Nτν)2/L

≈ ζGΛK−2(Nν)2/L.

(4.9)

To analyze the first term of ds, we evaluate
∑K

k=1 ‖λk −mK‖2 for the Nτ nearest

sublattice K-tuples (λ1, λ2, · · · , λK) with centroids mK = τ ∈ Λs/K . Let

f ,
K∑

k=1

‖λk −mK‖2,

ςk ,
k∑

i=1

λi, k = 1, 2, · · · , K,
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Then

f =
K∑

k=1

∥∥∥∥λk − 1

K
ςK

∥∥∥∥
2

=

(
K−1∑

k=1

∥∥∥∥λk − 1

K
ςK

∥∥∥∥
2
)

+

∥∥∥∥λK − 1

K
ςK

∥∥∥∥
2

=

(
K−1∑

k=1

∥∥∥∥
(

λk − 1

K − 1
ςK−1

)
+

1

K − 1

(
ςK−1 − K − 1

K
ςK

)∥∥∥∥
2
)

+

∥∥∥∥ςK−1 − K − 1

K
ςK

∥∥∥∥
2

(a)
=

(
K−1∑

k=1

∥∥∥∥λk − 1

K − 1
ςK−1

∥∥∥∥
2
)

+
K

K − 1

∥∥∥∥ςK−1 − K − 1

K
ςK

∥∥∥∥
2

(b)
=

K−1∑

k=1

k + 1

k

∥∥∥∥ςk − k

k + 1
ςk+1

∥∥∥∥
2

.

(4.10)

Equality (a) holds because the term
〈∑K−1

k=1

(
λk − 1

K−1
ςK−1

)
, 1

K−1

(
ςK−1 − K−1

K
ςK

)〉

is equal to zero. After using the same deduction K − 1 times, we arrive at equality

(b).

There is a one-to-one correspondence between (λ1, λ2, · · · , λK) and (ς1, ς2, · · · , ςK).

So the problem of finding Nτ nearest sublattice K-tuples (λ1, λ2, · · · , λK) with given

centroid mK = τ ∈ Λs/K , is equivalent to finding the Nτ optimal sublattice (K − 1)-

tuples (ς1, ς2, · · · , ςK−1) given ςK = KmK in (4.10).

The ith nearest sublattice point to k
k+1

ςk+1 is approximately on the boundary of

an L dimensional sphere with volume iNν. So given ςk+1, the ith smallest value

of ‖ςk − k
k+1

ςk+1‖2 is approximately (iNν/BL)2/L/L = GL(1 + 2/L)(iNν)2/L, where

BL = G
−L/2
L (L + 2)−L/2 is the volume of an L-dimensional sphere of unit radius [51],

and GL is the dimensionless normalized second moment of an L-dimensional sphere.
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Let f take on its nth smallest value f (n) at (ς
(n)
1 , ς

(n)
2 , · · · , ς

(n)
K−1), and let the sum

∑K−1
k=1

k+1
k

(ik)
2/L take on its nth smallest value at (i

(n)
1 , i

(n)
2 , · · · , i

(n)
K−1) ∈ ZK−1. Then

f (n) =
K−1∑

k=1

k + 1

k

∥∥∥∥ς
(n)
k − k

k + 1
ς
(n)
k+1

∥∥∥∥
2

≈ GL (1 + 2/L) (Nν)2/L

K−1∑

k=1

k + 1

k
(i

(n)
k )2/L.

Hence,

∑

λ∈Λ

K∑

k=1

‖λk −mK‖2 P (λ) =
∑

τ∈Λs/K

∑

λ∈Vs/K(τ)

K∑

k=1

‖λk −mK‖2 P (λ)

≈ 1

Nτ

Nτ∑
n=1

K−1∑

k=1

k + 1

k

∥∥∥∥ς
(n)
k − k

k + 1
ς
(n)
k+1

∥∥∥∥
2

≈ GL(1 + 2/L) (Nν)2/L 1

Nτ

Nτ∑
n=1

K−1∑

k=1

k + 1

k
(i

(n)
k )2/L

(4.11)

Consider the region defined as

Ω ,
{

K−1∑

k=1

k + 1

k
x

2/L
k ≤ C, x1, x2, · · · , xK−1 ≥ 0, x1, x2 · · · , xK−1 ∈ R

}
. (4.12)

Chose C appropriately so that the volume of Ω is V (Ω) = Nτ . As Nτ → ∞, Ω

contains approximately Nτ optimal integer vectors (i1, i2, · · · , iK−1). These Nτ points

are uniformly distributed in Ω, with density one point per unit volume. Because the

ratio between the volume of each point occupied and the total volume is 1/Nτ , which

approaches zero when Nτ →∞, we can replace the summation by integral and get

1

Nτ

Nτ∑
n=1

K−1∑

k=1

k + 1

k
(i

(n)
k )2/L ≈

∫
x∈Ω

∑K−1
k=1

k+1
k

x
2/L
k dx∫

x∈Ω
dx

=

∫
y∈Ω0

∑K−1
k=1 y

2/L
k dy∫

y∈Ω0
dy

,

(4.13)
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where yk = (k+1
k

)L/2xk, k = 1, 2, · · · , K − 1, and Ω0 is defined as

Ω0 ,
{

K−1∑

k=1

y
2/L
k ≤ C, y1, y2, · · · , yK−1 ≥ 0, y1, y2 · · · , yK−1 ∈ R

}
. (4.14)

Substituting (4.13) in to (4.11), we have

∑

λ∈Λ

K∑

k=1

‖λk −mK‖2 P (λ) ≈ GL(1 + 2/L) (Nν)2/L

∫
y∈Ω0

∑K−1
k=1 y

2/L
k dy∫

y∈Ω0
dy

. (4.15)

Let V (Ω0) denote the volume of region Ω0, then

V (Ω0) =

∫

y∈Ω0

dy1 dy2 · · · dyK−1

= KL/2

∫

x∈Ω

dx1 dx2 · · · dxK−1

= KL/2Nτ

= K−L/2N.

(4.16)

Let GΩ0 denote the dimensionless normalized 2
L
th moment of Ω0, that is

GΩ0 , 1

K − 1

∫
y∈Ω0

∑K−1
k=1 y

2/L
k dy

V (Ω0)
1+

2/L
K−1

. (4.17)

Applying scaling on Ω0 will not change GΩ0 , which makes it a good figure of the shape

of Ω0. For the special case L = 1, the region Ω0 is a K − 1 dimensional sphere in the

first octant, so the normalized second moment GΩ0 = 4GK−1. For the special case

K = 2, GΩ0 = L/(L + 2) is the normalized 2
L
th moment of a line [0, C]. Generally,

using Dirichilet’s Integral [54], we get

GΩ0 =
1

n + 2
L

Γ(nL
2

+ 1)
2

nL

Γ(L
2

+ 1)
2
L

, (4.18)

62



4.3 Asymptotical Results for K ≥ 2 and Optimal ν, N,K M.A.Sc. - X. Huang - McMaster - ECE

where the Gamma function is defined as

Γ(z) =

∫ ∞

0

tz−1 e−t dt. (4.19)

Hence,

∫
y∈Ω0

∑K−1
k=1 y

2/L
k dy∫

y∈Ω0
dy

= GΩ0(K − 1)V (Ω0)
2/L
K−1 = GΩ0(K − 1)K

−1
K−1 N

2/L
K−1 . (4.20)

Substituting (4.20) into (4.15), we have

1

K

∑

λ∈Λ

K∑

k=1

‖λk −mK‖2 P (λ) ≈ GLGΩ0(1 + 2/L)(K − 1)K
−K
K−1 N

K
K−1

2
L ν

2
L

≈ GLΦK−1,L(K − 1)K
−K
K−1 N

K
K−1

2
L ν

2
L ,

(4.21)

where

Φn,L =
1 + 2

L

n + 2
L

Γ(nL
2

+ 1)
2

nL

Γ(L
2

+ 1)
2
L

.

Note Φn,1 = 12Gn and Φ1,L = 1.

Comparing (4.9) with (4.21), the first term of ds dominates the second term when

N →∞, thus

ds ≈ GLΦK−1,L(K − 1)K
−K
K−1 N

K
K−1

2
L ν

2
L . (4.22)

Substituting (4.22) and (2.7) into (2.23), we finally get a closed form solution of

the expected distortion for optimal MDLVQ

D = (1− pK)GΛν2/L + ζ2GLΦK−1,L(K − 1)K
−K
K−1 N

K
K−1

2
L ν

2
L + pKE[‖X‖2]. (4.23)

The total target entropy is Rt = KR, so we rewrite (2.14) to get

Nν = 2L(h(p)−Rt/K). (4.24)

63



4.3 Asymptotical Results for K ≥ 2 and Optimal ν, N,K M.A.Sc. - X. Huang - McMaster - ECE

For simplicity, define

η , 2L(h(p)−Rt/K). (4.25)

Now we have

D = (1− pK)GΛν2/L + ζ2GLΦK−1,L(K − 1)K
−K
K−1 η

K
K−1

2
L ν

−1
K−1

2
L + pKE[‖X‖2]. (4.26)

By differentiating D to ν, we get the optimal ν.

νopt = η

(
ζ2

1− pK

GL

GΛ

ΦK−1,L

K
K

K−1

)L(K−1)
2K

.

Substituting νopt to (4.24), we get optimal N :

Nopt =

(
1− pK

ζ2

GΛ

GL

K
K

K−1

ΦK−1,L

)L(K−1)
2K

. (4.27)

If K = 2, the expression of Nopt can be simplified as

Nopt =

(
2(1 + p)

p

GΛ

GL

)L
4

. (4.28)

Remark 1: Nopt is independent of the total target entropy rate Rt and source

entropy rate h(p). It only depends on the loss probability p and on the number of

descriptions K. Substituting νopt into (4.26), the average distortion can be expressed

as a function of K. Then optimal K can be solved numerically.

Remark 2: When K = 2, (4.22) can be simplified to

ds ≈ 1

4
GL(N2ν)2/L. (4.29)

For any a ∈ (0, 1), let N = 2L(aR+1), then ν = 2L(h(p)−(a+1)R−1). Note when R → ∞,

we have N →∞. Substituting the expressions of N and ν in to (2.7) and (4.29), we
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get

lim
R→∞

dc2
2R(1+a) =

1

4
GΛ22h(p)

lim
R→∞

di2
2R(1−a) = GL22h(p), i = 1, 2

So asymptotically, the proposed algorithm achieves the second-moment gain of a

lattice for the central distortion, and the second-moment gain of a sphere for the side

distortion, thus the asymptotic performance is optimal and the same as the expression

in [51].
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Chapter 5

Codecell Convexity of MDSQ

In this chapter we study the relationship between the optimality of multiple descrip-

tion scalar quantizers (MDSQ) and the convexity of the side quantizers of MDSQ.

The significance of this study is two folds: first, the codecell convexity or lack of it

reveals the structures of optimal MDSQ; second, constraining the side quantizers to

be convex can greatly simplify optimal MDSQ design [13].

We say that a scalar quantizer is convex if all its codecells are contiguous intervals

on the real line (i.e., a convex point set). For fixed-rate single description scalar

quantization, constraining the codecells to be convex does not preclude optimality

[18]. In the case of entropy-constrained single description scalar quantization, the

optimality of a scaler quantizer design requires codecell convexity only for continuous

sources, but not so for discrete sources [25]. Effros et al. showed that codecell

convexity of side quantizers can preclude optimality for some discrete distributions in
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both fixed-rate and entropy-constrained MDSQ [14]. Dumitrescu and Wu investigated

the conditions in which optimal MDSQ have convex side quantizers [12].

Although globally optimal single description scalar quantizer design can be solved

in polynomial time [55], no polynomial-time algorithm for optimal MDSQ design has

so far been proposed, nor has the problem been proven to be NP-complete.

Vaishampayan proposed a local optimization approach of gradient descent to

MDSQ design [48]. However, the problem of optimal MDSQ is solvable in polynomial

time complexity if the side quantizers are confined to be convex [13, 12, 33, 14]. That

is why we are interested in the convexity of MDSQ.

5.1 Measurement of Convexity

Each codeword of the central quantizer of MDSQ is a central lattice point λ. The

corresponding codecell (central cell) is the Voronoi cell V (λ), and hence is convex.

The codecell of side quantizer (side cell) k (k ∈ {1, 2, · · · , K}) for a sublattice point

λs, is

Wk(λs) = ∪
αk(λ)=λs

V (λ) (5.1)

Since the codecell of a side quantizer is the union of several central quantizer cells, it

may not be convex (i.e., the union is not necessarily a contiguous interval on the real

line). In order to measure the degree of convexity of the side quantizer Wk(λs), we
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define a cell compactness factor:

Ck(λs) =
V ol(Wk(λs))

V ol(Convexhull(Wk(λs)))
. (5.2)

If Wk(λs) is convex, Ck(λs) = 1. In general, it is between 0 and 1.

For MDSQ with lattice code books, central cells are intervals with equal length ν.

Those central cells are ordered in real line (−∞,∞). Let the central lattice be Λ =

{· · · , x−2, x−1, x0, x1, x2, · · · } = {· · · ,−2ν,−ν, 0, ν, 2ν, · · · }, where xi = iν. Let the

sublattice be Λs = {· · · , y−2, y−1, y0, y1, y2, · · · } = {· · · ,−2νN,−νN, 0, νN, 2νN, · · · },

where yi = iνN . We can see that the central cell V (xi) = [(i− 1
2
)ν, (i + 1

2
)ν).

A side cell is jointed by several central cells. It can be a contiguous interval (if it

is convex) or the union of several disjoint intervals (if it is not convex). Define the

spread of a side cell Wk(λs), k ∈ {1, 2, · · · , K} as

Sk(λs) =
max(Wk(λs))−min(Wk(λs))

ν
. (5.3)

The definition of spread is equivalent to that in [48]. It follows that Sk(λs) is an

integer. And latter we will show

Ck(λs) =
N

Sk(λs)
. (5.4)

5.2 Index Assignment Matrix

An index assignment of MDSQ can be expressed by an index assignment (IA) ma-

trix. Assume an index assignment function α maps a central lattice point xl to an
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ordered K-tuple: α(xl) = (yi1 , yi2 , · · · , yiK ). Then the index assignment function

can be represented by a K dimensional IA matrix, where each integer l is placed in

(i1, i2, · · · , iK).

For convenience of drawing pictures, we assume K = 2 so that the IA matrix

is two dimensional. If the index assignment maps xl to an ordered pair (yi, yj):

α(xl) = (yi, yj), the integer l is placed in row i and column j of the associated IA

matrix.

At first, we assume that N is odd. When N is odd, the sublattice is clean, centric

and S-similar to the central lattice, thus the greedy IA algorithm is optimal (Theorem

1). There is an odd number of central lattice points in Vs/2(τ), if τ ∈ Λs. Their index

assignments are represented by the blocks with odd elements spreading from the

matrix diagonal in Figure 5.1. There is an even number of central lattices in Vs/2(τ),

if τ 6∈ Λs. Their index assignments are represented by the blocks with even elements

spreading from the matrix diagonal. The greater the sublattice index N , the wider

the spread of the indices away from the main diagonal. This corresponds to different

trade-offs between the central and side distortions.

Figure 5.2 shows the index assignments obtained by the greedy algorithm for

N = 3. Vs/2(O) has one central lattice point x0, which is labeled by (O,O): α(x0) =

(O,O); Vs/2(
O+A

2
) has two central lattice points x1, x2, which are labeled by (A, O)

and (O, A) respectively: α(x1) = (A,O), α(x2) = (O,A). Figure 5.3 (a) shows the

associated IA matrix of Figure 5.2. By switching the index assignments for x1, x2, we
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B'  ●      
A'   ●     
O    ●    
A     ●   
B      ●  �       � 

 

 �  B' A' O A B � �         
B'  �  ●     
A'  ● ● ●    
O   ● ● ●   
A    ● ● ●  
B     ● �  �         

 

 � B' A' O A B � �        
B'  � ● ●    
A'  ● ● ● ●   
O  ● ● ● ● ●   
A   ● ● ● ●  
B    ● ● �  �        

 

 

/ 2( ),s sV Oτ τ = ∈ Λ  

/2( ), ( ) / 2s sV O Aτ τ = + ∉Λ  

(a) N = 1 (b) N = 3 (c) N = 5

Figure 5.1: Selected index pairs for different values of N .OOOA' AO OA AAOA'A'OA'A'-3 -2 -1 0 1 2 A3B' BB'B' BB
Figure 5.2: Index assignments for N = 3. Points of Λ, Λs and Λs/2 are marked by ·,

•, and ×, respectively.

have α(x1) = (O,A), α(x2) = (A, O). This is shown in Figure 5.3 (b). The switching

does not affect the average distortion D as discussed in Section 3.2. However, after

switching, the maximum spread increase from 4 in Figure 5.3 (a) to 5 in Figure 5.3

(b). Thus the maximum side distortion increases by switching, which is usually not

favorable.

When N is even, the sublattice is not clean. But it is easy to show the greedy

algorithm is still optimal if we broke the tie on the boundary of a Voronoi cell of the K-

fraction lattice. Index assignments for other values of N are illustrated in Figure 5.4

and Figure 5.5. Those index assignments are given by our greedy index assignment

algorithm in Section 3.2, with additional criteria of minimizing the maximum side

70



5.3 Compactness of Side Cells vs. Probability of Packet LossM.A.Sc. - X. Huang - McMaster - ECE � B' A' O A B � �        
B'  � -4     
A'  -5 -3 -2    
O   -1 0 2   

A    1 3 4  
B     5 �  �        

 

Spread of side cell A is 4 

 �  B' A' O A B � �         
B'  �  -4     
A'  -5 -3 -2    
O   -1 0 1   
A    2 3 4  
B     5 �  �         

 

Spread of side cell A is 5 

(a) IA matrix for Figure 5.2 (b) IA matrix after switching

Figure 5.3: IA matrices for N = 3. (a) and (b) show two optimal index assignments

with different spreads

distortion (or spread). Vaishampayan presented good index assignments for odd N in

his pioneer work on MDSQ [48]. The IA matrices in [48] is given by intuition without

proof of optimality. Interestingly, his IA matrices are the same as our optimal IA

matrices for MDSQ with lattice codebooks.

5.3 Compactness of Side Cells vs. Probability of

Packet Loss

The expected distortion of optimal two-description MDLVQ is denoted by (4.7), which

holds for MDSQ with Z lattice codebooks and odd N (because the the sublattice of

Z lattice is clean, S-similar and centric when N is odd). The expected distortion of

our optimal greedy algorithm for MDSQ with Z lattice and even N is easy to deduct
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(a) N = 2OOOA' AAO OA BOA'AA'OOA'A'A' -3 -2 -1 0 1 2 3 AA BB' -4 4B'B' BB
(b) N = 4OOOA' AAA' AO OAA'AOA'A'OA'A' -3 -2 -1 0 1 2 3 AA
(c) N = 5

Figure 5.4: Index assignments for N = 2, 4, 5. Points of Λ, Λs and Λs/2 are marked

by ·, •, and ×, respectively.

and omitted here. The results are

D =





1
12

(1− p2)ν2 + 1
24

p(1− p)(N4 − 1)ν2 + p2E[‖X‖2], N ≡ 1 mod 2,

1
12

(1− p2)ν2 + 1
24

p(1− p)(N4 + 3N2 + 8)ν2 + p2E[‖X‖2], N ≡ 0 mod 4,

1
12

(1− p2)ν2 + 1
24

p(1− p)(N4 + 3N2 − 4)ν2 + p2E[‖X‖2], N ≡ 2 mod 4.

The optimal sublattice index N∗ versus the description loss probability p is shown in

Figure 4.2.

Given N , any side cell has the same spread N2−N
2

+1, and compactness N
N2−N

2
+1

=

2N
N2−N+2

. If p is greater than 5
47

= %10.6, the optimal sublattice index N∗ ≤ 2, thus

optimal side quantizers has convex codecells. Figure 5.6 shows the compactness of

side cells versus probability of description loss.
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B'  -4 -3     
A'   -2 -1    
O    0 1   
A     2 3  
B      4  �       � 

 

 � B' A' O A B � �        
B'  � -6 -5    
A'  -7 -4 -2 -1   
O   -3 0 2 3  

A    1 4 6  
B     5 �  �        

 

 � B' A' O A B � �        
B'  � -7 -6    
A'  -8 -5 -3 -1   
O  -4 -2 0 3 6   
A   1 2 5 7  
B    4 8 �  �        

 

(a) N = 2 (b) N = 4 (c) N = 5

Figure 5.5: IA matrices for N = 2, 4, 5.
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Figure 5.6: Compactness of side cells versus description loss probability p.
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Chapter 6

Conclusions

Multiple description lattice vector quantization is a promising technique for robust

networked signal communications. Optimal index assignment is a key issue in MDLVQ

design that largely determines the rate-distortion performance of the system. Al-

though optimal MDLVQ index assignment is conceptually a problem of linear assign-

ment, the challenge is that the original problem involves a bijective mapping between

two infinite sets Λ and ΛK
s . No good solutions are known to reduce the underlying

bipartite graph to a modest size while ensuring optimality. Therefore, the prob-

lem remains largely open. This thesis presented a linear-time algorithm for optimal

MDLVQ index assignment. Under some mild conditions, the algorithm is optimal

for two balanced descriptions in any dimensions and for any sublattice index values

N . We conjecture that the algorithm, with an appropriate local adjustment, is also

optimal for any number of balanced descriptions K.
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We also made progress in the analysis of MDLVQ performance. Exact closed form

expression of the expected distortion was derived for K = 2 and for any N . For cases

K > 2, we improved the current asymptotic (N → ∞) expression of the expected

distortion.
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