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Abstract

Optimal index assignment of multiple description lattice vector quantizer
(MDLVQ) can be posed as a large-scale linear assignment problem. But is this
expensive algorithmic approach necessary? This paper presents a simple index
assignment algorithm for high-resolution MDLVQ of K > 2 balanced descrip-
tions in any dimensions. Despite its simplicity, the new algorithm is optimal
for a large family of lattices encountered in theory and practice, in terms of
minimizing the expected distortion for any side description loss rate and any
side entropy rate. This work offers exact combinatoric constructions of optimal
index assignments, rather than arguing for the optimality asymptotically. Con-
sequently, the optimality holds for all values of sublattice index N (i.e., over all
trade-offs between the central and side distortions), rather than for very large
N only. Furthermore, the time complexity of the new algorithm is O(N) as
opposed to O(NY) for a current linear assignment-based method.

New and improved closed form expressions of the expected distortion as the
function of N and K are also presented. Thus the optimal values of N and K
can be computed.

1 Introduction

An effective multiple description coding (MDC) technique is multiple description
vector quantization (MDVQ). Unfortunately, optimal MDV(Q design is computation-
ally intractable (optimal single-description VQ design is already NP-hard) unless NP
equals P. To overcome this operational difficulty, one typically imposes some structure
on codebooks. A popular structured MDV(Q approach is multiple description lattice
vector quantization (MDLVQ). Given a lattice A for central description, the problem
of optimal code design reduces to one of associating A to a so-called sublattice A,
(typically Ay C A), and establishing a one-to-one mapping, called index assignment
@, between a point A € A and an ordered K-tuple (\y, ..., \x) € AKX where K is the
number of side descriptions [2]. The goal of the MDLVQ index assignment is to find
the bijection function a : A < a(A) C AX that minimizes an expected distortion
measure over all subsets of K descriptions.
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Vaishampayan et al. discussed a “guiding principle” for constructing an optimal
MDLVQ index assignment [3]. Some example index assignments were presented with-
out the proof of their optimality. More recently, Ostergaard et al. studied the problem
of optimal MDLV(Q index assignment, and presented some asymptotical results [6].
But to our best knowledge, the only known exact solution of optimal MDLV(Q index
assignment is a linear assignment algorithm of extremely high complexity [6] (O(N°)
as shown in Section 3.4). In this paper we propose a very simple linear-time algo-
rithm for MDLV(Q index assignment for balanced descriptions, and then prove, under
the assumption of high resolution, that the algorithm is optimal for many commonly
used good lattices, over the entire range of achievable central distortions given the
side entropy rate. The optimality is in terms of minimizing the expected distortion
given the side description loss rate and given the side entropy rate.

This extended abstract is organized as follows. The next section formulates the
problem and introduces necessary notations. Section 3 presents and analyzes the new
index assignment algorithm, together with some insights that lead us to the algorithm.
Section 4 proves the optimality of the new index assignment under a condition of the
so-called S-similarity of sublattices. It also shows that the S-similarity can be satisfied
by lattices commonly used in signal quantization. Sections 5 and 6 present some new
and improved closed form expressions of the expected distortion for optimal MDLVQ),
which allow the optimal parameters N and K to be computed.

2 Problem Formulation and Notations

In an MDLVQ system of K descriptions, an input vector x € R is first quantized to
the nearest lattice point A in a lattice A C R, called central (fine) lattice. Then the
point A is mapped by a bijective labeling function o : A +» AX to an ordered K-tuple
(A1, Ao, -+, Ak ), where A, is a coarse lattice. Typically, Ay C A, hence Ay is called a
sublattice. Let the components of a be (v, g, -+ , k), e, ap(N) = A, 1 <k < K.
With the function « the encoder generates K descriptions of x: Ay, 1 < k < K, and
transmits each description via an independent channel to a receiver.

If the decoder receives all K descriptions, it can reconstruct x to A with the inverse
labeling function a~!. In this best case the average distortion per dimension is given

by
d—z/ &= Al px (2) do

AEA

where V() is the Voronoi cell of the lattice point A € A.
In general, due to channel losses, the decoder receives only a subset y of the K
descriptions, and it can reconstruct x to the average of the received descriptions:

Assuming that the K channels are independent, and each has a probability p; to fail,
we can write the expected distortion as

D= Z( )1—291 "Dy,

TEEE .2

Proceedings of the Data Compression Conference (DCC’06) COMPUTER
0-7695-2545-8 /06 $20.00 © 2006 IEEE SOCIETY



where Dy, is the average distortion when receiving k out of K descriptions. For lattices
of high resolution or uniform source distribution px such that X is the centroid of its
Voronoi region, one can show [6]

D=(1-p)d, +Z<Cl|l>\ mc||* + G ZHM—WMH) P(\) + p B[l X,

AEA
(1)
where

K-1 K-1
( ) L=p)* i, =) (f)(l—pz)kp{{ ’“% (2)

k= k=1

P(X\) = Pr(Q(X) = A), and m is the centroid of all K’ descriptions my = + Zszl k-
Now note that d., p;, (; and (5 are constant given source and channel statistics and
given A, A,. We reduce the problem of optimal MDLVQ index assignment to that of

minimizing
Z( ZH)\ mK|I2+%H)\—mKH2>P()\). (3)

AEA

3 Index Assignment Algorithm

This section presents a very simple index assignment algorithm for MDLVQ of K
balanced descriptions. For clarity of presentation and avoiding immaterial details
in describing our main ideas, we consider the sublattices A, that are geometrically
similar to A and clean (no central lattice point lies on the boundary of a sublattice
Voronoi cell). Let us first reveal some useful lattice structures to be exploited by the
index assignment algorithm.

3.1 Useful lattice properties

In the following study of optimal index assignment for K balanced descriptions, the
lattice Ay/x = %As plays an important role, and it has the following interesting
relations to A and A,.

Property 1 m(A, Ao, -+, Ag) = %Zszl Ak is an onto (but not one-to-one) map:

P’I”OOf.' 1) )\1,)\2,"' ,)\K S AS = Zle Ak € As = %Zszl Ak € As/K; 2)
V1T € As/K; let )\1 = KT,)\Q = = )\K = 07 then )\1,)\2,"' ,)\K S AS and
m()\l,)\27"',/\K):T. ]

This means that the centroid of any K-tuples in AX must be in A/, and further
A,k consists only of these centroids.

The sublattice Ay i partitions the space into Voronoi cells. Denote the Voronoi
cell of a point 7 € A,/ by

Vo (T) = Az flo =7l < lle =7 ,¥7 € Ay/ic}-
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We note that no central lattice point of A lies on the boundary of any Voronoi
cell of Ay/k.

Property 2 A,/ is clean, if A, is clean.

Proof: Assume for a contradiction that there was a point A € A on the boundary
of Vyi(1) for a 7 € Ay/k. Scaling both A and V;,x(7) by K places K\ on the
boundary of KV i (1) = {Kz : ||[Ko — K7|| < ||[Ke — K7||,V7T € Ay/k}. But K is
a point of A, and K'V;k(7) is nothing but the Voronoi cell V; of the sublattice point
K7 € A, or the point KA € A lies on the boundary of V,(KT), contradicting that A
is clean. u

Property 3 Both lattices A; and A are symmetric about any point T € A,)o.

Proof: V71 € Agj9, we have 27 € Ay, so 27—\ € A, holds for VA, € A; similarly,
V7T € Agja, we have 27 € A, so 27 — A € A holds for VA € A. [

3.2 Greedy labeling

We are now ready to state a new index assignment algorithm. We partition the
space by Voronoi cells at the sites of all points in A,/x. According to Property 2, no
point A € A is on the boundary of any Voronoi region of A, k. To label the central
lattice points inside V;,x(7), we choose the |A NV, k(7)| nearest ordered K-tuples of
sublattice points that have the same centroid 7.

Interestingly, it follows from (3) that any bijective mapping between the |A N
Vi i (7)| center lattice points and the |[A NV, k(7)| K-tuples yields the same value of
ds. One can choose an arbitrary assignment between the two sets and still minimize
ds.

Since there are K classes of Ay /A, there are K* classes of Vy k(7). We only
need to label one representative out of each class, and cover the whole space by
shifting. Thus it suffices to label a total of N central lattice points.

For the two description case, these |A N V,/o(7)| ordered pairs are formed by the
|A N V;)2(7)| nearest sublattice points to 7 in A, by Property 3. Note when 7 € A,
the ordered pair (7, 7) should be used to label 7 itself.

3.3 Two Examples

Let us see how the proposed index assignment algorithm works via examples on
an A, lattice, which are presented graphically. The A, lattice A is generated by
basis vectors represented by complex numbers: 1 and w = 1/2 4 i1/3/2. The first
example is a two-description case, with the sublattice A, given by basis vectors 5 —
w, w(b — w), which is geometrically similar to A, has index N = 31 and is clean
(refer to Figure 1). There are two kinds of Voronoi cells of A,/s, as shown by the
solid and dashed boundaries in Figure 1. The solid cell V;5(O) is centered at a
central lattice point and contains 7 central lattice points. The dashed cell V;,o(M)
is centered at the midpoint of the line segment OA, and contains 8 central lattice
points. To label the 7 central lattice points in V;,2(O), we use the 7 nearest sublattice
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Figure 2: Three description index assign-
ment for the lattice Ay with index N = 73.
Points of A, As; and A,/3 are marked by -, e
and +, respectively.

Figure 1: Two description index assignment
for the Ay lattice with index N = 31. Points
of A, As and A/, are marked by -, e and +,
respectively.

points to O: (O, A, B,C, D, E, F). They form 6 ordered pairs with the midpoint O :
((A,D),(D,A),(B,E),(E,B),(C,F),(F,C), and an unordered pair (O, O) since O
is itself a sublattice point. To label the 8 central lattice points in V/o(M), we use the
8 nearest sublattice points to M: (O, A, B, F,C, H, E,G). They form 8 ordered pairs
with midpoint M: (O, A), (4,0), (B, F), (F,B), (C,H), (H,C), (E,G), (G, E). The
labels of those 7 and 8 central lattice points are given in Figure 1.

Figure 2 illustrates how the proposed algorithm works in the case of three descrip-
tions. The depicted index assignment is for three balanced descriptions computed for
the sublattice of index N = 73 that is generated by basis vectors: 8 —w, w(8 — w).

3.4 Complexity

The presented algorithm is fast with an O(N) time complexity. The simplicity and
low complexity of the presented index assignment are clear because we took a greedy
optimization approach in designing it. The tantalizing question is, of course, can it be
optimal? Let the distance between a nearest pair of central lattice points in A be one.
The result of [3] for the first example (best known so far) is d, = 561/31 = 18.0968,
while the greedy algorithm does better, producing d; = 528/31 = 17.0323. Indeed, in
both examples, one can verify that the expected distortion is minimized as the two
terms of dg are minimized independently.

In the next section we will prove, under fairly relaxed conditions, that our greedy
index assignment algorithm is optimal for two balanced descriptions despite its sim-
plicity.

The only exact algorithm known so far for optimal MDLVQ index assignment is
linear assignment. Although applying the linear assignment algorithm to optimize
the index assignment is conceptually straightforward, a key issue that determines the
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complexity remains inadequately treated. This is how to reduce the labeling problem
from an association between two infinite sets A and AX to between two finite sets,
and keep the latter two sets as small as possible without compromising optimality.
A solution proposed by [6] seems to require O(N°) time because it used a candidate
set of O(N?) central lattice points (the complexity of the linear assignment problem
is cubic in the worst case). Even with such a large set of candidate central lattice
points, still no bound was given on the size of the candidate K-tuples of sublattice
points used for labeling, and no proof of optimality was offered.

4 Proof of Optimality

In the following development, we consider the natural construction: the sublattice
Voronoi cell Vi(\g) centered at Ay € Ay contains the N nearest central lattice points
to ;. To prove the optimality of the greedy algorithm, we need some additional
properties.

Lemma 1 If A € V,5(7) and A & Vio(T), where MA €A and 7,7 € Agj2, then
[A =7l < [[]A =7

Proof: Scaling both A and V;»(7) by 2 places the lattice point 2 inside V(27);

scaling both A and Vi2(7) by 2 places the lattice point 2X outside V;(27). Since
a sublattice Voronoi cell contains the nearest central lattice points, ||2A — 27| <
|2A — 27|, and hence |A — 7| < [|A = 7. |

Definition 1 A lattice Ay is said to be S-similar to A, if As can be generated by
scaling and rotating A around any point T € Ny and Ay is a sublattice of A.

Note the S-similarity requires that the center of symmetry be a point in Ay),.
In what follows we assume that sublattice A, is S-similar to A. Also, we denote
by V; the region created by scaling and rotating V,/(7) around 7.

Lemma 2 If\, € V; and ), & V=, where Ae; \s € Ay and 7,7 € Agjo, then || A — 7| <
IAs — 7.

Proof: This lemma follows from Lemma 1 and the definition of S-Similar. ®

Lemma 3 V7 € A,),, the sublattice points in V. form |A N Vyo(7)| nearest ordered
2-tuples with their midpoints being T.

Proof:  Letting 7 = 7 in Lemma 2, we see that V, contains the |[A; N V| =
|A N V/2(7)| nearest sublattice points to 7. Thus this lemma follows from Property
3. |

Theorem 1 The proposed greedy algorithm is optimal if the sublattice is S-Similar
to its central lattice.
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Proof: By Property 1, for any Aj, Ay € A, (A + X2)/2 € Ay jo. Now referring to
(3), the proposed algorithm minimizes the second term »,, [|A — (A1 + X2)/2[[2P(X)
of dy, since it labels any central lattice point A € V() by (A1, A2) € A2, and
(M + A2)/2 = 7. The first term Y, 1A — Ao|[2PP(A ) of d is also independently
minimized by the algorithm. Assume that 3, [[A — A2||*P()) was not minimized.

Then there exists an ordered 2-tuple (A, As) € A2 which is not used in the index as-
signment, and ||A; — || < ||y — Ao|, where (A1, A2) € A is used in the index assign-
ment. Let 7 = (A +X2)/2,7 = ()\1+)\2)/2 Since (Aq, )\2) is used to label a central lat-
tice point in V;/5(7), A1, A2 € V; by Lemma 3. However, A1, Ao ¢ V=, otherwise ()\1, )\2)
would be used in the index assignment by Lemma 3. So we have ||A; — 7| < A — TH
by Lemma 2, hence ||A; — Ao < [\ — o], contradicting || A1 — Ao|| < [[Ar — Ao

The above proof of algorithm optimality requires the S-similarity of the sublattice.
The following theorems show that S-similar sublattices can be easily found for many
N values, especially for many lattices commonly used in signal quantization, such as
Ay, 7%, ZH(L = 4k), and ZL (L odd). In the following statements, m is a positive
integer. The proofs of these theorems are omitted due to the space limit. Our proofs
are based on some results in [1, 4]

Theorem 2 An L-dimensional lattice A has an S-similar sublattice with index N, if
N =mF is odd.

Theorem 3 For the Ay or Z? lattice A, a sublattice Ay is S-similar to A, if it is
geometrically similar to A and clean.

Theorem 4 The ZLX(L = 41,1 > 1) lattice A has an S-similar, clean sublattice with
index N, if N =m"? with m = 4n + 1.

Theorem 5 The Z% (L is odd) lattice A has an S-similar, clean sublattice with index
N, if and only if N = m* is odd.

5 Analytical Results for Two Descriptions and Op-
timal N

Up to now no closed form expression is known for the expected distortion of optimal
MDLVQ), except for asymptotic results as N — oo [3, 6]. However, practical scenarios
for MDLVQ usually involve modest values of N [5]. As a byproduct of our algorithm
development and the proof of its optimality, we can now derive the closed form ana-
lytical solution of the side distortion achieved by optimal MDLVQ for two balanced
descriptions. Under high resolution assumption,

dc = GAI/Q/L, (4)

where v is the L-dimensional volume of a Voronoi region of A, and G, is the dimen-
sionless normalized second moment of lattice A.
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Let a; be the squared distance of the " nearest sublattice point to the origin,
and b; be the squared distance of the i nearest central lattice point in V4(0) to the
origin. We can show that the two terms in d; are

1 125\71%’ 2 _ 121']11[71'
D7 =Xl PO = = Y A - maf PO = = ()
AEA AEA

The above equations lead to some interesting observations. The term N~* va 1 G
is the average squared distance of the /N nearest sublattice points to the origin, which
was also realized by previous authors [3]. The other term N~ S Y b, is the average
squared distance of central lattice points in V;(0) to the origin.

Substituting (4) and (5) into (1), we get the closed form expression for the expected
distortion,

1
D=(1-p)Gr" + Sp(1 = p)L 7N Zaﬁzb +p EIX|IP]. (6)

Let h(p) be the source entropy rate per dimension, then the entropy rate of a side
description is given by [3],

R = h(p) — (1/L) log,(Nv), (7)

Thus the optimal N can be solved by combing (6) and (7), rather than solving
many instances of index assignment problem for varying N.
For Z lattice, (6) can be simplified to

1
D= (1= )" + (1 = p)(N* = 10/ 4 P B[X .

6 Analysis for K > 2 Descriptions and Optimal N, K

Now we derive a closed form expression of the expected distortion of optimal MDLVQ
for general K > 2 asymptotically. Our result improves a similar formula presented in
[6] that includes an empirically determined constant. It also allows us to determine
the optimal sublattice index N, as well as the optimal number of descriptions K.

Let N, denote the number of central lattice points in V;/x (7). As N — oo, each
Voronoi cell of A, i contains approximately N, ~ N/K L central lattice points, which
are uniformly distributed V;, k(7). Hence the second term of d; is

QZIIA— mi||* P(N) = A(NTV)Q/L ?G K=*(Nv)*'t. (8)
2 XeA

To analyze the first term of d,, we evaluate 1, [|A\x — mg||? for the N, nearest
sublattice K-tuples (A1, Ao, - -+, Ax) with centroids mx =7 € Ay/k. Let

I
(V]
>
ES
Il
>

K
F=3 - melt
k=1
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After some tedious algebra,
K-
k=

There is a one-to-one correspondence between (A1, Ag, - -+, A ) and (1,62, , Sk ).
So the problem of finding N, nearest sublattice K-tuples (Ay, Ag, -+, Ax) with given
centroid mg = 7 € Ay/k, is equivalent to finding the N; optimal sublattice (K — 1)-
tuples (s1,62, -+ ,Skx—1) given ¢ = Kmy in (9).

The " nearest sublattice points to kiﬂgkﬂ is approximately on the boundary of

2

k
kE+1

Sk — Sk+1 (9)

an L dimensional sphere with volume iNv. So given ¢, the i*" smallest value of
sk — 7Sk l|? is approximately (iNv/Vp)**/L = GL(L + 2)(iNv)** /L, where V;,
is the volume of an L-dimensional sphere of unit radius, and G, is the dimensionless
normalized second moment of an L-dimensional sphere.

Let f take on its n'" smallest value f™ at (g, (") m ), e ,g[(?zl), and let the sum
! EEL(,)2/F take on its n' smallest value at (i} (o ), z’é”), e ,i([glll) € Z5~!'. Then
K-1 K-
k+1 k 2
=3 st ( +2) Gul) Z
Hence,
K N, K—-1
1 k + 1
SO0 e = il PO) & (1 4+ )G (V)P (i)
AEA k=1 N n=1 k=1

After lengthy derivation (omitted due to space limit), we arrive at

K

I NK-1

N
N
il

K
1
= STS Tk = mil? PO & Grdg (K — 1)K *= Vi, (10)

AEA k=1

where ,
1+ 2T(% 4+ 1)7z
n+i ki
Note ®x_1 1 = 12Gk_1 for L =1, and Px_; 1 =1 for K = 2.

Comparing (8) with (10), the first term of ds dominates the second term when
N — o0, thus

n,L —

dy ~ Gpy_1 (K — )K* T NRALyT, (11)

Substituting (11) and (4) into (1), we finally get a closed form solution of the
expected distortion for optimal MDLVQ

D= (1= pF)Gar*" + GOk 1 (K — )KFTINF iyt + pFE[|X|[2].  (12)
The total target entropy is R; = KR, so we rewrite (7) to get

Ny = 20X =R/ K) — ) (13)
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where 7 is constant. Now we have
7K _K 2 ;3
D= (1= pf)Gar*" + (G 1LPx 1 p(K — DK ipiriyi=ri + pFE[|X|*]. (14)
By differentiating D to v, we get the optimal v. Substituting it to (13), we get
optimal N:

L(K—1) L(K—1)

¢ G 2K 1—pfGa, x 1
(2 LR RS Nopt = A KRS
Vort =11 <1 —pif Ga FoLE r o G G D11

Note N, is independent of the total target entropy rate R, and source entropy
rate h(p). It only depends on the loss probability p; and on the number of descriptions
K. Substituting v, into (14), the average distortion can be expressed as a function
of K. Then optimal K can be solved numerically.

7 Conclusions

Although optimal MDLVQ index assignment is conceptually a problem of linear as-
signment, the problem is originally about finding a bijective mapping between two
infinite sets A and AX. No good solutions are known to reduce the underlying bi-
partite graph to a modest size without missing optimality. Therefore, the problem
remains largely open. We presented a linear-time algorithm for solving the problem
of optimal MDLV(Q index assignment. The algorithm is proven to be optimal for two
balanced descriptions in any dimensions. We conjecture that the algorithm is also
optimal for any number of balanced descriptions.

We also made progress in the analysis of MDLVQ performance. Exact closed form
expression of the expected distortion was derived for K = 2 and for any /N. For cases
K > 2, we improved the current asymptotic expression of the expected distortion.
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