Sensing Increased Image Resolution Using Aperture Masks

Ankit Mohan, Xiang Huang, Jack Tumblin
Northwestern University

Ramesh Raskar
MIT Media Lab

CVPR 2008
Supplemental Material
Contributions

• Achieve sub-pixel image shift using a mask in front of the lens

• Enhance effective sensor resolution without moving the camera or sensor.
We intentionally blur the image so that when the aperture is open, the blur is less than one pixel, Δp.
Moving a pinhole in along the lens effectively moves the image in an out-of-focus sensor plane.
Moving a pinhole in along the lens is same moving the sensor by sub-pixel distances.
Moving a pinhole in along the lens is same *moving the sensor* by sub-pixel distances.
Moving the pinhole aperture with a slightly out of focus sensor…

…is equivalent to…

…translation based superresolution

But, aperture movement is in mm instead of \(\mu \text{m} \)
Pin holes are inefficient, collect little light, thus increasing exposure time. Instead, we use wider carefully chosen apertures.
Unique finite sized aperture positions
Unique finite sized aperture positions
Unique finite sized aperture positions
We capture multiple photos with out-of-focus sensor and unique finite sized aperture positions.
3x resolution enhancement: Capture 3 photos with aperture position $l_r, l_g, \text{ and } l_b$
Total blur size = one pixel size (Δ_p)
Blur due to each partial aperture

= $\Delta_a = \Delta_p/3$
2x resolution enhancement for a 1D signal

Scene, $s(x)$
Capture 2 photos with complimentary apertures

Notice the phase shift between the two signals. For a total blur of one pixel, this corresponds to half pixel shift.
Anti-aliasing due to finite pixel size

Scene, $s(x)$

$\rightarrow l_0(x)$

$s(x) * l_0(x)$

$\rightarrow p(x)$

$s(x) * l_0(x) * p(x)$

$\rightarrow l_1(x)$

$s(x) * l_1(x)$

$\rightarrow p(x)$

$s(x) * l_1(x) * p(x)$
Discrete sampling due to pixels

Samples captured by the two photos are different.
Interleave samples from the two photos

\[s(x) * l_0(x) \quad s(x) * l_0(x) * p(x) \quad f_0[x] \]

\[s(x) * l_1(x) \quad s(x) * l_1(x) * p(x) \quad f_1[x] \]

Interleaved Samples
Deblur the effect of $p(x)$ and $l(x)$
Image Shifting without Moving Parts

Suggested Design:
Programmable Aperture with NO moving parts, eliminating expensive precision or cumbersome registration

Our Implementation:
Masks in a Holder
Prototype using a conventional SLR camera

- Cokin filter holder
- Slide mask in front of the lens
Aperture Masks
Result: Radial spoke chart

Mask size=12mm
Mask resolution=3x3
Image scale factor=1/1.7
Input image size=471x741
Output image size=1413x1413
Input images (3x3)
Cropped and bicubic interpolated input images (4 of 9 shown)

Observe the jaggies in the input images. In the result, details in high spatial frequencies closer to center of the spoke are maintained up to a limit.
Result: Barcode

Mask size=12mm
Mask resolution=4x1
Image scale factor=1/3
Input image size=171x416
Output image size=684x416
Input Images (4x1)

Result: 4x increase in horizontal resolution
Result: Sheets of paper

Mask size=12mm
Mask resolution=4x1
Image scale factor=1/8
Input image size=100x300
Output image size=400x300
Input images (4x1)
2 of the 4 input images

Result: 4x increase in horizontal resolution
Result: Carpet tile

Mask size=12mm
Mask resolution=2x2
Image scale factor=1/2
Input image size=256x256
Output image size=512x512