Feature-Specific Profiling

Vincent St-Amour
Leif Andersen
Matthias Felleisen

PLT © Northeastern University

CC 2015 — April 18th, 2015

#lang racket
(require math/array)

(require “synth.rkt")

(provide drum)

(define (random-sample) (- (2.0 (random)) 1.0))
; Drum "samples” (Arrays of floats)

; TODO compute those at compile-time
(define bass-drun

(let O
; 0.05 seconds of noise whose value changes every 12 samples
(define n-samples (seconds->samples 0.05))

(define n-different-samples (quotient n-samples 12))
(for/array #:shape (vector n-samples) #:fill 0.0
(i (in-range n-different-samples)]
[sample (in-producer random-sample (lambda _ #f))]
#:when #t
[j (in-range 12)])

sample)))
(define snare
; 0.05 seconds of noise
(build-array (vector (seconds->samples 0.05))
(lambda (x) (random-sample))))

; limited drum machine

; drum patterns are simply lists with either 0 (bass drum), X (snare) or

; #f (pause)
(define (drum n pattern tempo)
(define samples-per-beat (quotient (* fs 60) tempo))
(define (make-drum drun-sample samples-per-beat)
(array-append
(list drun-sample
(make-array (vector (- samples-per-beat
(array-size drun-sanple)))

0.0))))
(define 0 (make-drum bass-drum samples-per-beat))
(define X (make-drum snare samples-per-beat))

(define pause (make-array (vector samples-per-beat) 0.0))
(array-append*
(for#/list ([i (in-range n)]
[beat (in-list pattern)])
(case beat

o x

) 0

((#f) pause)))))

; TODO more drums, cymbals, etc.

#lang racket
; Simple WAVE encoder

; Very helpful reference:
; http://ccrma. stanford. edu/courses/422/projects/WaveFornat/

(provide write-wav)
(require racket/sequence)

; A WAVE file has 3 parts:

; - the RIFF header: identifies the file as WAVE

; - data subchunk

; data : sequence of 32-bit unsigned integers

(define (write-wav data
#:num-channels [num-channels 1
#:sample-rate [sample-rate 441001
#:bits-per-sample [bits-per-sample 161)

(define bytes-per-sample (quotient bits-per-sample 8))
(define (write-integer-bytes i [size 41)
(write-bytes (integer->integer-bytes i size #f)))
(define data-subchunk-size
(* (sequence-length data) num-channels (/ bits-per-sample 8)))

; RIFF header
(write-bytes #"RIFF")

; 4 bytes: 4 + (8 + size of fmt subchunk) + (8 + size of data subchunk)

(write-integer-bytes (+ 36)
(write-bytes #"WAVE")

; fnt subchunk

(write-bytes #"fmt ")

; size of the rest of the subchunk: 16 for PCM
(write-integer-bytes 16)

; audio format: 1 = PCH

(write-integer-bytes 1 2)

(write-integer-bytes num-channels 2)
(write-integer-bytes sample-rate)

; byte rate

(write-integer-bytes (* sample-rate num-channels bytes-per-sample))
; block align

(write-integer-bytes (x num-channels bytes-per-sample) 2)
(write-integer-bytes bits-per-sample 2)

; data subchunk
(write-bytes #"data")
(write-integer-bytes data-subchunk-size)
(for ([sanple datal)
(write-integer-bytes sample bytes-per-sample)))

#lang racket
(require math/array)

(require "wav-encode.rkt") ; TODO does not accept arrays directly
; TODO try to get deforestation for arrays. does that require

; non-strict arrays? lazy arrays?

(array-strictness #f)

; TODO this slows down a bit, it seems, but improves memory use

(provide fs seconds->samples)

(define fs 44100)
(define bits-per-sample 16)

(define (freq->sample-period freq)
(round (/ fs freq)))

(define (seconds->samples s)
(inexact->exact (round (* s £5))))

; Oscillators

(provide sine-wave square-wave sawtooth-wave inverse-sawtooth-wave
triangle-wave)

; array functions receive a vector of indices
(define-syntax-rule (array-lambda (i) body ...)
(lambda (i*) (let ([i (vector-ref ix)]) body ...)))

; These all need to return floats.
5 TODO use TR? would also optimize for us

(define (sine-wave freq)
(define f (exact->inexact (/ (x freq 2.0 pi) fs)))
(array 0 (sin (* f i X))

(define (square-wave freq)
(define sample-period (freg->sample-period freq))
(define sample-period/2 (quotient sample-period 2))
(array-lanbda (x)
; 1 for the first half of the cycle, -1 for the other half
(define x* (modulo x sample-period))
(if (> x* sample-period/2) -1.0 1.0)))

(define ((make-sawtooth-wave coeff) freq)
(define sample-period (freq->sample-period freq))
(define ple-period/2 (quotient ple-period 2))
(array-lanbda (x)
; gradually goes from -1 to 1 over the whole cycle
(define x* (exact->inexact (modulo x sample-period)))
(% coeff (- (/ xx sample-period/2) 1.0))))
(define he k h 1.0))
(define inver -1.0))

(define (triangle-wave freq)
(define sample-period (freq->sample-period freq))
(define ple-pe 2 (quotient ple-pe 2))
(define sample-period/4 (quotient sample-period 4))
(array-lanbda (x)
; go from 1 to -1 for the first half of the cycle, then back up
(define x* (modulo x sample-period))
(if (> xx sample-period/2)
(= (/ x» sample-period/4) 3.0)
(+ (/ x* sample-period/4 -1.0) 1.0))))

; TODO make sure that all of these actually produce the right frequency
i (i.e. no off-by-an-octave errors

; TODO add weighted-harmonics, so we can approximate instruments
; and take example from old synth

(provide emit plot-signal)

; assumes array of floats in [-1.0,1.0]
; assumes gain in [0,1], which determines how loud the output is
(define (signal->integer-sequence signal #:gain [gain 11)
(for/vector #:1length (array-size signal)
([sample (in-array signal)l)
(max © (min (subl (expt 2 bits-per-sample)) ; clamp
(exact-floor
(* gain
(* (+ sample 1.0) ; center at 1, instead of @
(expt 2 (subl bits-per-sample)))))))))

(define (emit signal file)
(with-output-to-file file #:exists 'replace
(lanbda () (write-wav (signal->integer-sequence signal #:gain 0.3)))))

#lang racket
(require math/array)

(provide mix)
; A Weighted-Signal is a (List (Array Float) Real)
; Weighted sum of signals, receives a list of lists (signal weight).

Shorter signals are repeated to match the length of the longest.
; Normalizes output to be within [-1,1].

; mix : Weighted-Signal * -> (Array Float)
(define (mix . ss)

(define signals (map (lambda (x) ; : Weighted-Signal
(first x))

)
(define weights (map (lambda (x) ; : Weighted-Signal
(real->double-flonum (second x)))
)
(define downscale-ratio (/ 1.0 (apply + weights)))

; scale-signal : Float -> (Float -> Float)
(define ((scale-signal w) x) (* x w downscale-ratio))

(parameterize ([array-broadcasting 'permissivel) ; repeat short signals
(for/fold ([res (array-map (scale-signal (first weights))
(first signals))1)

([s (in-list (rest signals))]

[w (in-list (rest weights))1)

(define scale (scale-signal w))
(array-map (lambda (acc ; : Float
new) ; : Float
(+ acc (scale new)))

res s))))

#lang racket
(require math/array racket/flonum racket/unsafe/ops)

(require "synth.rkt" "mixer.rkt")
(provide scale chord note sequence mix)

(define i i req base i itone)
(x 440 (expt (expt 2 1/12) -57)))

; details at http://ww.phy.mtu.edu/~suits/notefregs. htnl
(define (note-freq note)
; A4 (440Hz) is 57 semitones above CO, which is our base.
(* 440 (expt (expt 2 1/12) (- note 57))))

; A note is represented using the number of semitones from Co.
(define (name+octave->note name octave)
(+ (* 12 octave)
(case name
[(C) 01 C(C# Db) 11 [(D) 2] [(D# Eb) 31 [(E) 41 [(F) 51 L(F# Gb) 6]
[(G) 71 [(G# Ab) 8] [(A) 91 [(A# Bb) 10] [(B) 111)))

; Similar to scale, but generates a chord.

; Chords are pairs (listof note) + duration

(define (chord root octave duration type . notesx)
(define notes (apply scale root octave duration type notesx))
(cons (map car notes) duration))

; Single note.
(define (note name octave duration)
(cons (name+octave->note name octave) duration))

; Accepts notes or pauses, but not chords.
(define (synthesize-note note n-samples function)
(build-array (vector n-samples)
(if note
(function (note-freq note))
(lambda (x) 0.9))))
; pause

repeats n times the sequence encoded by the pattern, at tempo bpm
pattern is a list of either single notes (note . duration) or
chords ((note ...) . duration) or pauses (#f . duration)
TODO accept quoted notes (i.e. args to ‘note’). o/w entry is painful
(define (sequence n pattern tempo function)
(define samples-per-beat (quotient (x fs 66) tempo))
(array-append*
(for#/list ([i (in-range n)] ; repeat the whole pattern
[note (in-list pattern)l)
(if (list? (car note)) ; chord
(apply mix
(for/list ([x (in-list (car note))l)
(list (synthesize-note x
(x samples-per-beat (cdr note))
function)

m
; all of equal weight
(synthesize-note (car note)
(» samples-per-beat (cdr note))
function)))))

#lang racket #lang racket #lang racket
(require math/array) (require math/array) (require math/array)

(emit
(sequence

sawtooth-wave #:bpm 380

[(C 5 #f (C 5) #f (A# 4) #f (C5) ...
"funky-town.wav")

|— Ill Il ; 1 for the first half of the cycl for the other half —

o) 0) (define x* (modulo x sample-period)) (define i req base
((#f) pause))))) (if (> x* sample-period/2) -1.0 1.0))) (% 440 (expt (expt 2 1/12) -57)))
; TODO more drums, cymbals, etc.

; details at http://www.phy.mtu.edu/~suits/notefregs.html
(define (coeff) frea) (define (note-freq note)
(440Hz) is 57 semitones above CO, which is our base.
40 (expt (expt 2 1/12) (- note 57))))

#lang racket
; Simple WAVE encoder te is represented using the number of semitones from Co.

[] D G e (nametoctave->note name octave)
* 12 octave)
case name
[(Cc) 01 [(c# Db) 11 [(D) 2] [(D# Eb) 31 [(E) 41 [(F) 51 [(F# Gb) 6]
[(6) 71 [(G# Ab) 81 [(A) 91 [(A# Bb) 101 [(B) 111)))

; Very helpful reference:
; http://ccrma. stanford. edu/courses/422/projects/WaveFornat/

(provide write-wav)
(require racket/sequence) F U/v N

; A WAVE file has 3 parts:

; - the RIFF header: identifies the file as WAVE

; - data subchunk

; data : sequence of 32-bit unsigned integers

(define (write-wav data
#:num-channels [num-channels 1]
#:sample-rate [sample-rate 44100]
#:bits-per-sample [bits-per-sample 161)

lar to scale, but generates a chord.

ds are pairs (listof note) + duration

e (chord root octave duration type . notesx)

ine notes (apply scale root octave duration type notesx))
s (map car notes) duration))

le note.
e (note name octave duration)
s (name+octave->note name octave) duration))

pts notes or pauses, but not chords.
e (synthesize-note note n-samples function)
1d-array (vector n-samples)
(if note
(function (note-freq note))
(lambda (x) 0.9))))

(define bytes-per-sample (quotient bits-per-sample 8))
(define (write-integer-bytes i [size 41)
(write-bytes (integer->integer-bytes i size #f)))
(define data-subchunk-size
(* (sequence-length data) num-channels (/ bits-per-sample 8)))

; RIFF header
(write-bytes #'RIFF")
; 4 bytes: 4 + (8 + size of fmt subchunk) + (8 + size of data subch
(write-integer-bytes (+ 36 d behunk-size))
(write-bytes #"WAVE")

ats n times the sequence encoded by the pattern, at tempo bpm
ern is a list of either single notes (note . duration) or
ds ((note ...) . duration) or pauses (#f . duration)
accept quoted notes (i.e. args to ‘note’). o/w entry is painful
e (sequence n pattern tempo function)
ine samples-per-beat (quotient (x fs 60) tempo))
ay-append
rx/list ([i (in-range n)] ; repeat the whole pattern
[note (in-list pattern)])
if (list? (car note)) ; chord
(apply mix
(for/list ([x (in-list (car note))])
(list (synthesize-note x
(x samples-per-beat (cdr note))
function)

; fnt subchunk
(write-bytes #"fmt ")

; size of the rest of the subchunk: 16 for PCM
(write-integer-bytes 16)

; audio format: 1 = PCH

(write-integer-bytes 1 2)

(write-integer-bytes num-channels 2)
(write-integer-bytes sample-rate)

; byte rate

(write-integer-bytes (* sample-rate num-channels bytes-per-sample))
; block align

(write-integer-bytes (x num-channels bytes-per-sample) 2)
(write-integer-bytes bits-per-sample 2)

m
; all of equal weight
(synthesize-note (car note)
(+ samples-per-beat (cdr note))
function)))))

; data subchunk
(write-bytes #'data”)
(write-integer-bytes data-subchunk-size)
(for ([sample datal)
(write-integer-bytes sample bytes-per-sample)))

#lang racket #lang racket #lang racket

(require math/array) (require math/array) (require math/array)
(require “synth.rkt") (require "wav-encode.rkt") ; TODO does not accept arrays directly (provide mix)
(provide drum) ; TODO try to get deforestation for arrays. does that require ; A Weighted-Signal is a (List (Array Float) Real)
; non-strict arrays? lazy arrays?
(define (random-sample) (- (* 2.0 (random)) 1.0)) (array-strictness #f) ; Weighted sum of signals, receives a list of lists (signal weight).

; TODO this slows down a bit, it seems, but improves memory use ; Shorter signals are repeated to match the length of the longest.

; Drum "samples” (Arrays of floats) ; Normalizes output to be within [-1,1].

; TODO compute those at compile-time

(define bass-drun (provide fs seconds->samples) ; mix : Weighted-Signal * -> (Array Float)
(let O (define (mix . ss)

; 0.05 seconds of noise whose value changes every 12 samples (define fs 44100)

(define n-samples (seconds->samples 0.05)) (define bits-per-sample 16) (define signals (nap (lambda (x) ; : Weighted-Signal

(define n-different-samples (quotient n-samples 12)) (First x))

(for/array #:shape (vector n-samples) #:fill 0.0 (define (freq->sample-period freq))
i (in-range n-different-sanples)] (round (/ fs freq))) (define weights (map (lambda (x) ; : Weighted-Signal
[sample (in-producer randon-sample (lambda _ #f))1 (real->double-flonum (second x)))
#:when #t (define (seconds->samples s))
[j (in-range 12)1) (inexact->exact (round (* s £5)))) (define downscale-ratio (/ 1.0 (apply + weights)))

sample)))
(define snare
; 0.05 seconds of noise
(build-array (vector (seconds->samples 0.05))
(lambda (x) (random-sample)))) ; Oscillators

; scale-signal : Float -> (Float -> Float)
(define ((scale-signal w) x) (* x w downscale-ratio))

(P ize ([array-br ing 'permissive]) ; repeat short signals
(for/fold ([res (array-map (scale-signal (first weights))
; limited drum machine (provide sine-wave square-wave sawtooth-wave inverse-sawtooth-wave (first signals))])
; drum patterns are simply lists with either O (bass drum), X (snare) or triangle-wave) ([s (in-list (rest signals))]
; #f (pause) [w (in-list (rest weights))1)
(define (drum n pattern tempo) ; array functions receive a vector of indices (define scale (scale-signal w))
(define samples-per-beat (quotient (* fs 60) tempo)) (define-syntax-rule (array-lambda (i) body ...) (array-map (lambda (acc ; : Float
(define (make-drum drun-sample samples-per-beat) (lambda (i*) (let ([i (vector-ref ix 0)1) body ...))) new) ; : Float

(+ acc (scale new)))

(array-appendx

racket funky-town.rkt
cpu time: 24s

; - data subchunk

o T GRS R St P actave daration tpe rotesn)
; data : sequence of 32-bit unsigned integers

5 go from 1 to -1 for the first half of the cycle, then back up (cons (map car notes) duration))
(define (write-wav data (define x* (modulo x sample-period))
#:nun-channels [num-channels 1] (if (> xx sample-period/2) ; Single note.
#:sample-rate [sample-rate 441001 (- (/ x* sample-period/4) 3.0) (define (note name octave duration)
#:bits-per-sample [bits-per-sample 161) (+ (/ xx sample-period/4 -1.0) 1.0))) (cons (nametoctave->note name octave) duration))
(define bytes-per-sample (quotient bits-per-sample 8)) ; TODO make sure that all of these actually produce the right frequency ; Accepts notes or pauses, but not chords.
(define (write-integer-bytes i [size 41) ;' (l.e. no off-by-an-octave errors) (define (synthesize-note note n-samples function)

(write-bytes (integer->integer-bytes i size #f)))
(define data-subchunk-size
(* (sequence-length data) num-channels (/ bits-per-sample 8)))

(build-array (vector n-samples)
; TODO add weighted-harmonics, so we can approximate instruments (if note
; and take example from old synth (function (note-freq note))

(lambda (x) 0.9))))
; RIFF header

i ; pause
(write-bytes #"RIFF")
; 4 bytes: 4 + (8 + size of fmt subchunk) + (8 + size of data subchunk) (provide emit plot-signal) ; repeats n times the sequence encoded by the pattern, at tempo bpm
(write-integer-bytes (+ 36 ize)) ; pattern is a list of either single notes (note . duration) or
(write-bytes #"WAVE") ; assumes array of floats in [-1.0,1.0] ; chords ((note ...) . duration) or pauses (#f . duration)
; assumes gain in [0,1], which determines how loud the output is ; TODO accept quoted notes (i.e. args to ‘note’). o/w entry is painful
3 fmt subchunk (define (signal->integer-sequence signal #:gain [gain 11) (define (sequence n pattern tempo function)
(write-bytes #"fmt ") (for/vector #:length (array-size signal) (define samples-per-beat (quotient (x fs 60) tempo))
; size of the rest of the subchunk: 16 for PCM ([sample (in-array signal)l) (array-appends
(write-integer-bytes 16) (max @ (min (subl (expt 2 bits-per-sample)) ; clamp (fors/list ([i (in-range n)] ; repeat the whole pattern
; audio format: 1 = PCM (exact~floor [note (in-list pattern)l)
(write-integer-bytes 1 2) (* gain (if (list? (car note)) ; chord
(write-integer-bytes num-channels 2) (% (+ sample 1.0) ; center at 1, instead of @ (apply mix
(write-integer-bytes sample-rate) (expt 2 (subl bits-per-sanple))))))))) (for/list ([x (in-list (car note))l)
; byte rate (list (synthesize-note x
(write-integer-bytes (* sample-rate num-channels bytes-per-sample)) (* samples-per-beat (cdr note))
; block align (define (emit signal file) function)
(write-integer-bytes (x num-channels bytes-per-sample) 2) (with-output-to-file file #:exists ‘replace)
(write-integer-bytes bits-per-sample 2) (lambda () (write-wav (signal->integer-sequence signal #:gain 0.3))))) ; all of equal weight

(synthesize-note (car note)
(+ samples-per-beat (cdr note))
function)))))

; data subchunk
(write-bytes #"data")
(write-integer-bytes data-subchunk-size)
(for ([sample datal)
(write-integer-bytes sample bytes-per-sample)))

#lang racket
(require math/array)

(require “synth.rkt"
(provide drum)
(define (random-sample) (- (* 2.0 (random)) 1.0)

; Drum "samples” (Arrays of floats
; TODO compute those at compile-time
(define bass-drun
(et O
; 0.05 seconds of noise whose value changes every 12 samples
(define n-samples (seconds->samples ©.05))
(define n-different-samples (quotient n-samples 12))
(for/array #:shape (vector n-samples) #:fill 0.0
i (in-range n-different-sanples)]
[sample (in-producer random-sample (lambda _ #f))]
#:when #t
[j (in-range 12)1)

sample)))
(define snare
; 0.05 seconds of noise

#lang racket
(require math/array)

(require "wav-encode.rkt") ; TODO does not accept arrays directly
5 TODO try to get deforestation for arrays. does that require

; non-strict arrays? lazy arrays?

(array-strictness #f)

; TODO this slows down a bit, it seems, but improves memory use

(provide fs seconds->samples)

(define fs 44100)
(define bits-per-sample 16)

(define (freq->sample-period freq
(round (/ fs freq)))

(define (seconds->samples .
(inexact->exact (round (* s fs))))

#lang racket
(require math/array)

(provide mix)
; A Weighted-Signal is a (List (Array Float) Real.

Weighted sum of signals, receives a list of lists (signal weight)
Shorter signals are repeated to match the length of the longest
; Normalizes output to be within [-1,11.

; mix : Weighted-Signal * -> (Array Float:

(define (mix . ss)

(define signals (map (lambda (x) ; : Weighted-Signal
(First x))
s8))
(define weights (map (lambda (x) ; : Weighted-Signal
(real->double-flonum (second x)))
%))
(define downscale-ratio (/ 1.0 (apply + weights))

; scale-signal : Float -> (Float -> Float.
(define ((scale-signal w) x) (* x w downscale-ratio)

Time %

Name + location

32.7%
27.5%
18.1%

math/array/untyped-array-pointwise.rkt:43:39
math/array/typed-array-transform.rkt:207:16

synth.rkt:86:2
% math/array/untyped-array-pointwise.rkt:30:35

% math/array/typed-utils.rkt:199:2
math/array/typed-array-struct.rkt:117:29

A
* (smme—umHm) nun-channels (/ bits-per-sample 8)))

; RIFF header
(write-bytes #"RIFF")

; 4 bytes: 4 + (8 + size of fmt subchunk) + (8 + size of data subchunk;
(write-integer-bytes (+ 36 ize))

(write-bytes #"WAVE""

; fmt subchunk
(write-bytes #"fmt ")

; size of the rest of the subchunk: 16 for PCM
(write-integer-bytes 16)

; audio format: 1 = PCM

(write-integer-bytes 1 2)

(write-integer-bytes num-channels 2)

(write-integer-bytes sample-rate)

; byte rate

(write-integer-bytes (* sample-rate num-channels bytes-per-sample))
; block align

(write-integer-bytes (x num-channels bytes-per-sample) 2;
(write-integer-bytes bits-per-sample 2)

; data subchunk
(write-bytes #"data")
(write-integer-bytes data-subchunk-size)
(for ([sample datal)
(write-integer-bytes sample bytes-per-sample)))

37TODO add weig! S0 We can approximate
;5 and take example from old synth

(provide emit plot-signal)

; assumes array of floats in [-1.0,1.0.
; assumes gain in [0,1], which determines how loud the output is
(define (signal->integer-sequence signal #:gain [gain 11)
(for/vector #:length (array-size signal)
([sample (in-array signal)]
(max 0 (min (subl (expt 2 bits-per-sample)) ; clamp
(exact-floor
(* gain
(% (+ sample 1.0) ; center at 1, instead of 0
(expt 2 (subl bits-per-sample)))))))))

(define (emit signal file)
(with-output-to-file file #:exists 'replace
(lambda () (write-wav (signal->integer-sequence signal #:gain ©.3)))))

(function (note-freq note))
(lanbda (x) 0.9))))
; pause

; repeats n times the sequence encoded by the pattern, at tempo bpm
; pattern is a list of either single notes (note . duration) or
; chords ((note ...) . duration) or pauses (#f . duration)
; TODO accept quoted notes (i.e. args to ‘note’). o/w entry is painful
(define (sequence n pattern tempo function:
(define samples-per-beat (quotient (* fs 60) tempo))
(array-append*
(fors/list ([(in-range n)] ; repeat the whole pattern
[note (in-list pattern)])
(if (1list? (car note)) ; chord
(apply mix
(for/list ([x (in-list (car note))]
(list (synthesize-note x
(* samples-per-beat (cdr note))
function)
m»
; all of equal weight
(synthesize-note (car note)
(» samples-per-beat (cdr note))
function)))))

#lang racket
(require math/array)

(require “synth.rkt"
(provide drum)
(define (random-sample) (- (* 2.0 (random)) 1.0))

; Drum "samples” (Arrays of floats
; TODO compute those at compile-time
(define bass-drun
(et O
; 0.05 seconds of noise whose value changes every 12 samples
(define n-samples (seconds->samples ©.05))
(define n-different-samples (quotient n-samples 12))
(for/array #:shape (vector n-samples) #:fill 0.0
i (in-range n-different-sanples)]
[sample (in-producer random-sample (lambda _ #f))]
#:when #t
[j (in-range 12)1)

sample)))
(define snare
; 0.05 seconds of noise

Time %

#lang racket
(require math/array)

(require "wav-encode.rkt") ; TODO does not accept arrays directly
5 TODO try to get deforestation for arrays. does that require

; non-strict arrays? lazy arrays?

(array-strictness #f)

; TODO this slows down a bit, it seems, but improves memory use

(provide fs seconds->samples)

(define fs 44100)
(define bits-per-sample 16)

(define (freq->sample-period freq
(round (/ fs freq)))

(define (seconds->samples .
(inexact->exact (round (* s fs))))

Name + location

#lang racket
(require math/array)

(provide mix)
A Weighted-Signal is a (List (Array Float) Real

Weighted sum of signals, receives a list of lists (signal weight)
Shorter signals are repeated to match the length of the longest
Normalizes output to be within [-1,1].

; mix : Weighted-Signal * -> (Array Float:

(define (mix . ss)

(define signals (map (lambda (x) ; : Weighted-Signal
(First x))
s8))
(define weights (map (lambda (x) ; : Weighted-Signal
(real->double-flonum (second x)))
%))
(define downscale-ratio (/ 1.0 (apply + weights))

; scale-signal : Float -> (Float -> Float.
(define ((scale-signal w) x) (* x w downscale-ratio)

32.7%
27 .5%
18.1%
. 5%
. 0%
. 4%

o —————— £ Topor 2 werg
(* (sequence-length data) num-channels (/ bits-pet mple 8))) ; and take example from old synth

; RIFF header

math/array/untyped-array-pointwise.rkt:43:39
math/array/typed-array-transform.rkt:207:16
synth.rkt:86:2
math/array/untyped-array-pointwise.rkt:30:35
math/array/typed-utils.rkt:199:2
math/array/typed-array-struct.rkt:117:29

,s0 we can approxinate
(function (note-freq note))

(lanbda (x) 0.9))))
X ; pause

(write-bytes #"RIFF")

; 4 bytes: 4 + (8 + size of fmt subchunk) + (8 + size of data subchunk;
(write-integer-bytes (+ 36 ize))

(write-bytes #"WAVE""

; fmt subchunk
(write-bytes #"fmt ")
; size of the rest of the subchunk: 16 for PCM
(write-integer-bytes 16)

; audio format: 1 = PCM

(write-integer-bytes 1 2)

(write-integer-bytes num-channels 2)

(write-integer-bytes sample-rate)

; byte rate

(write-integer-bytes (* sample-rate num-channels bytes-per-sample))
; block align

(write-integer-bytes (x num-channels bytes-per-sample) 2;
(write-integer-bytes bits-per-sample 2)

; data subchunk
(write-bytes #"data")
(write-integer-bytes data-subchunk-size)
(for ([sample datal)
(write-integer-bytes sample bytes-per-sample)))

(provide emit plot-signal)

; assumes array of floats in [-1.0,1.0.
; assumes gain in [0,11, which determines how loud the output is
(define (signal->integer-sequence signal #:gain [gain 11)
(for/vector #:length (array-size signal)
([sample (in-array signal)l)
(max @ (min (subl (expt 2 bits-per-sample)) ; clamp
(exact-floor
(* gain
(% (+ sample 1.0) ; center at 1, instead of @
(expt 2 (subl bits-per-sample)))))))))

(define (emit signal file)
(with-output-to-file file #:exists 'replace
(lambda () (write-wav (signal->integer-sequence signal #:gain ©.3)))))

; repeats n times the sequence encoded by the pattern, at tempo bpm
; pattern is a list of either single notes (note . duration) or
; chords ((note ...) . duration) or pauses (#f . duration)
; TODO accept quoted notes (i.e. args to ‘note’). o/w entry is painful
(define (sequence n pattern tempo function:
(define samples-per-beat (quotient (* fs 60) tempo))
(array-append*
(fors/list ([(in-range n)] ; repeat the whole pattern
[note (in-list pattern)])
(if (1list? (car note)) ; chord
(apply mix
(for/list ([x (in-list (car note))]
(list (synthesize-note x
(* samples-per-beat (cdr note))
function)
m»
; all of equal weight
(synthesize-note (car note)
(» samples-per-beat (cdr note))
function)))))

#lang racket

#lang racket
(require math/array)

#lang racket
(require math/array)

(require math/array)

(require “synth.rkt") (require "wav-encode.rkt”) ; TODO does not accept arrays directly (provide mix)

(provide drum) ; TODO try to get deforestation for arrays. does that require
; non-strict arrays? lazy arrays?

(array-strictness #f) ; Weighted sum of signals, receives a list of lists (signal weight).

; TODO this slows down a bit, it seems, but improves memory use ; Shorter signals are repeated to match the length of the longest.
; Drum "samples” (Arrays of floats)

; Normalizes output to be within [-1,1].

; A Weighted-Signal is a (List (Array Float) Real)

(define (random-sample) (- (* 2.0 (random)) 1.0))

; TODO compute those at compile-time
(define bass-drun (provide fs seconds->samples) ; mix : Weighted-Signal * -> (Array Float)
(let O (define (mix . ss)

; 0.05 seconds of noise whose value changes every 12 samples (define fs 44100)
(define n-samples (seconds->samples 0.05)) (define bits-per-sample 16) (define signals (nap (lambda (x) ; : Weighted-Signal
(define n-different-samy™ " S “oiiia
(for/array #:shape (vec
(<] (in- ~signal
[sample (in- second x)))
#:when #t
[j (in-range ts)))
sample)))

(define snare
; 0.05 seconds of noise
(build-array (vector (sect
(lambda (x) (

— 21) ; repeat short signals
— irst weights))

; limited drum machine — n

; drum patterns are simply

“ratio))

; #f (pause)

(define (drum n pattern tem
(define samples-per-beat (
(define (make-drun drum-s:

(array-append*
(list drun-sample

typed components

(define 0 (make-drum |

(define X (make-drum ¢

(define pause (make-array

(array-append*

(For#/list ([i (in-rat
[beat (in-lit

= 4 untyped components ..

; TODO more drums, cymbals,

/ops)

freqs. html

is our base.

#lang racket
; Simple WAVE encoder 5 ; itones from Co.
; Very helpful reference:

; http://ccrma.stanford. edu;

[(E) 41 [(F) 51 [(F# Gb) 6]
(provide write-wav) [® 1))
(require racket/sequence)

; A WAVE file has 3 parts:

| | n
; - the RIFF header: ident] 5%)
; - data subchunk —— an type notesx))
; data : sequence of 32-bit

(define (write-wav data

#:num-chz

#:sample-

#:bits-pd)
(define bytes-per-sample (
(define (write-integer-byi D)

(write-bytes (integer->: ——
(define data-subchunk-siz¢
(* (sequence-length dat: =en
; RIFF header
(write-bytes #"RIFF")
; 4 bytes: 4 + (8 + size (attern, at tempo bpm
(write-integer-bytes (+ 3(2 . duration) or
(write-bytes #"WAVE") . duration)
). of/w entry is painful

5 fut subchunk e L5 & Gl T3 i s Lo irctin
(write-bytes #"fmt ") (for/vector #:length (arra; e signal) e samples-per-beat (quotient (x fs 60) tempo))
; size of the rest of the subchunk: 16 for PCM ([sample (in-array signal)l) (array-append#
(write-integer-bytes 16) (max @ (min (subl (expt 2 bits-per-sample)) ; clamp (for#/list ([i (in-range n)] ; repeat the whole pattern
; audio format: 1 = PCM (exact~floor [note (in-list pattern)l)
(write-integer-bytes 1 2) (* gain (if (list? (car note)) ; chord
(write-integer-bytes num-channels 2) (% (+ sample 1.0) ; center at 1, instead of @ (apply mix
(write-integer-bytes sample-rate) (expt 2 (subl bits-per-sanple))))))))) (for/list ([x (in-list (car note))l)
; byte rate (list (synthesize-note x
(write-integer-bytes (* sample-rate num-channels bytes-per-sample)) (* samples-per-beat (cdr note))
; block align (define (emit signal file) function)
(write-integer-bytes (x num-channels bytes-per-sample) 2) (with-output-to-file file #:exists ‘replace)
(write-integer-bytes bits-per-sample 2) (lambda () (write-wav (signal->integer-sequence signal #:gain 0.3))))) ; all of equal weight

(synthesize-note (car note)
; data subchunk

(+ samples-per-beat (cdr note))
(write-bytes #"data") function)))))
(write-integer-bytes data-subchunk-size)

(for ([sanple datal)

(write-integer-bytes sample bytes-per-sample)))

Provide

expensive

#lang racket
(require math/array)

(require “synth.rkt")

(provide drum)

(define (random-sample) (- (* 2.0 (random)) 1.0))

; Drum "samples” (Arrays of floats)
; TODO compute those at compile-time

(define bass-drum
(et O

; 0.05 seconds of noise whose value changes every 12 samples

(define n-samples

(seconds->samples ©.05))

(define n-different-samy”

(for/array #:shape (vec
(<] (in-
[sample (in
#:when #t
[j (in-range
sample)))

(define snare
; 0.05 seconds of noise
(build-array (vector (sec

(lambda (x) |

; limited drum machine
; drum patterns are simply]
; #f (pause)

(define (drum n pattern tem
(define samples-per-beat (
(define (make-drum drum-s:

(array-append*
(list drun-sample
(make-array (veci

0.0);
(define 0 (make-drum L
(define X (make-drum ¢

(define pause (make-array
(array-append*
(For/list ([i (in-ral
[beat (in-lit
(case beat
o x
) 0
£(#f) pause)))))
sre drums, cymbals,

‘acket

WAVE encoder S i
21pful refers

/ccrma. s .

libraries

write-wav)
racket/sequence)

file has .
RIFF header: ident;
3 subchunk

sequence of 32-bit
(write-wav data

constructs

#:sanple
#:bits-p

2 bytes-per-sample (
(define (write-integer-byi
(write-bytes (integer->;
(define data-subchunk-sizc
(* (sequence-length datz

; RIFF header
(write-bytes #"RIFF")

; 4 bytes: 4 + (8 + size

(write-integer-bytes (+ 3
(write-bytes #"WAVE")

; fmt subchunk
(write-bytes #"fmt ")

; size of the rest of the
(write-integer-bytes 16)
; audio format: 1 = PCM
(write-integer-bytes 1 2)

#lang racket
(require math/array)

(require "wav-encode.rkt") ; TODO does not accept arrays directly
5 TODO try to get deforestation for arrays. does that require

; non-strict arrays? lazy arrays?

(array-strictness #f)

; TODO this slows down a bit, it seems, but improves memory use

(provide fs seconds->samples)

(define fs 44100)
(define bits-per-sample 16)

Racket programs

subchunk: 16 for PCM

(write-integer-bytes nun-channels 2)
(write-integer-bytes sample-rate)

; byte rate

(write-integer-bytes (x
; block align

(write-integer-bytes (x num-channels bytes-per-sample) 2.

(write-integer-bytes bits-per-sample 2)

; data subchunk
(write-bytes #"data")

(write-integer-bytes data-subchunk-size)

(for ([sample datal)

(write-integer-bytes sample bytes-per-sample)))

nteger-sequence signal #:gain [gain 11)
(for/vector #:1ength (array-size signal)
([sample (in-array signal)l
(max @ (min (subl (expt 2 bits-per-sample)) ; clamp
(exact-floor
(* gain
(% (+ sample 1.0) ; center at 1, instead of @
(expt 2 (subl bits-per-sample)))))))))

(define (emit signal file)
(with-output-to-file file #:exists 'replace
(lanbda () (write-wav (signal->integer-sequence signal #:gain 0.3)))))

#lang racket
(require math/a

(provide mix)

rray)

; A Weighted-Signal is a (List (Array Float) Real.

; Weighted sum of signals, receives a list of lists (signal weight)
; Shorter signals are repeated to match the length of the longest

; Normalizes ou

; mix : Weighte
(define (mix .

(define signa

untyped components

tput to be within [-1,1].

d-signal * -> (Array Float)
ss)

1s (map (lambda (x) ; : Weighted-Signal

typed components € —

itern tempo function)

-signal
second x)))

£s)))
“ratio))
21) ; repeat short signals

irst weights))
n

nvisible

interop

tivedsemitone)

Costs

is our base.

itones from Co.

L(E) 41 [(F) 51 L(F# Gb) 61
L@ 111

s%)
on type notesx))

)

attern, at tempo bpm

2 . duration) or

« duration)

). o/w entry is painful

(define samples-per-beat (quotient (x fs 60) tempo))
(array-append*

(fors/list ([i

[note (in-list pattern)l)

(if (list? (car note)) ; chord
(apply mix
(for/list ([x (in-list (car note))]

(list (synthesize-note x

(in-range n)] ; repeat the

whole pattern

(* samples-per-beat (cdr note))
function)

m»

; all of equal weight
(synthesize-note (car note)
(+ samples-per-beat (cdr note))

function)))))

racket #lang racket

#lang racket #lang
(require math/array)

(require math/array) (require math/array)
(require “synth.rkt") (require "wav-encode.rkt”) ; TODO does not accept arrays directly (provide mix)

; A Weighted-Signal is a (List (Array Float) Real.

5 TODO try to get deforestation for arrays. does that require
; non-strict arrays? lazy arrays?

(define (random-sample) (- (* 2.0 (random)) 1.0)) (array-strictness #f.
; TODO this slows down a bit, it seems, but improves memory use

(provide drum)

; Weighted sum of signals, receives a list of lists (signal weight)
; Shorter signals are repeated to match the length of the longest

; Drum "samples” (Arrays of floats) ; Normalizes output to be within [-1,1]

: TODO compute those at compile-time

math/arra

Untyped Typed

component component

math/trig

Proxied value

Contract boundary

(St imtener ey — — T T ——=——

(write-integer-bytes num-channels 2) (* (+ sample 1.0) ; center at 1, instead of @ (apply mix

(write-integer-bytes sample-rate) (expt 2 (subl bits-per-sample))))))))) (for/list ([x (in-list (car note))]

; byte rate (list (synthesize-note x

(write-integer-bytes (sample-rate num-channels bytes-per-sample)) (* samples-per-beat (cdr note))
; block align (define (emit signal file) function,

(write-integer-bytes (x num-channels bytes-per-sample) 2) (with-output-to-file file #:exists 'replace)

(write-integer-bytes bits-per-sample 2) (lambda () (write-wav (signal->integer-sequence signal #:gain 0.3))))) ; all of equal weight

(synthesize-note (car note)
(+ samples-per-beat (cdr note))

; data subchunk
function)))))

(write-bytes #"data")
(write-integer-bytes data-subchunk-size)
(for ([sample datal)
(write-integer-bytes sample bytes-per-sample)))

#lang racket
(require math/array)

(require “synth.rkt")

(provide drum)

(define (random-sample) (- (* 2.0 (random)) 1.0))

Drum “samples” (Arrays of floats)

; TODO compute those at compile-time

(define bass-drum

(et O
; 0.05 seconds of n
(define n-samples
(define n-different

(for/array #:shape
([
[sample
#:when
[j (in-
sample)))

(define snare

; 0.5 seconds of noi

#f (pause)

(define (drum n pattern

#lang racl
; Simple WAV

(provide wri
(require rac

(define (wri

; http://cer

(define samples-per-b

(define (make-drum dr
(array-appendx
(list drum-sample

(make-array
wi9ssss

(define 0 (make-drum bass-drum samples-per-

(define X (make-drum snare samples-per-beat))

(define pause (nake-array (vector samples-per-beat) 0.0))
(array-append*
(fors/list ([i (in-range)]
[beat (in-list pattern)l)
(case beat

o x

) 0

()

; TODO more

Very helpf

A WAVE fil
- the RIF
- data su

data : seq

(define by
(define (w
(write-b
(define da
(* (sequ

; RIFF hea
(write-byt
; 4 bytes:
(write-int
(write-byt

; fmt subc
(write-byt
; size of

#lang racket
(require math/array)

(require "wav-encode.rkt") ; TODO does not accept arrays directly
; TODO try to get deforestation for arrays. does that require
; non-strict arrays? lazy arrays?

(array-strictness #f)
; TODO this slows down a bit, it seems, but improves memory use

(provide fs seconds->samples)

u
(build-array (vector
(lanbda repeat short signals
weights))
; limited drum machine
drum patterns are sim

(define f (exact->inexact (/ (x freq 2.0 pi) fs)))
(array) (sin (* f i x))))

(define (square-wave freq)
(define sample-period (freq->sample-period freq))
(define sample-period/2 (quotient sample-period 2))
(array-lambda (x)
5 1 for the first half of the cycle, -1 for the other half
(define x* (modulo x sample-period))

#lang racket
(require math/array)

(provide mix)

; A Weighted-Signal is a (List (Array Float) Real.

; Weighted sum of signals, receives a list of lists (signal weight)
; Shorter signals are repeated to match the length of the longest

; Normalizes output to be within [-1,1].

; mix : Weighted-Signal * -> (Array Float)

al
d x)))

0))

#lang racket
(require math/array racket/flonum racket/unsafe/ops)

(require "synth.rkt" "mixer.rkt")

(provide scale chord note sequence mix)

(define i i req base relati itone)

L(F# Gb) 61

Build a tool!

; audio format: 1 = PCM

(write-integer-bytes 1 2)
(write-integer-bytes num-channels 2)
(write-integer-bytes sample-rate)

; byte rate

(write-integer-bytes (* samp! s P
; block align

(write-integer-bytes (x num-channels bytes-per-sample) 2
(write-integer-bytes bits-per-sample 2.

; data subchunk
(write-bytes #"data")
(write-integer-bytes data-subchunk-size)
(for ([sample datal)
(write-integer-bytes sample bytes-per-sample)))

(exact-floor
(* gain
(% (+ sample 1.0) ; center at 1, instead of @
(expt 2 (subl bits-per-sample)))))))))

(define (emit signal file)
(with-output-to-file file #:exists 'replace
(lanbda () (write-wav (signal->integer-sequence signal #:gain 0.3)))))

bpm

painful

v uie wiose patern
rn)1)
(if (list? (car note)) ; chord
(apply mix
(for/list ([x (in-list (car note))]
(list (synthesize-note x
(* samples-per-beat (cdr note))
function)
m»
; all of equal weight
(synthesize-note (car note)
(» samples-per-beat (cdr note))
function)))))

10

Today’s menu

The user's view

e How to use the tool

The library author's view

e How to extend the tool

The tool builder's view

* How to build a similar tool

Evaluation

e How well does the tool work

11

The User's View

How to use the tool

12

$ racket funky-town-profile.rkt

Contracts account for 73.77% of running time
(17568 / 23816 ms)

6210 ms : Array-unsafe-proc
(—> Array (-> (vectorof Int) any))

3110 ms : array-appendx*

(—>* ((listof Array)) (Int) Array)
2776 ms : unsafe-build-array

(-> (vectorof Int) [...] Array)

Generic sequences account for 0.04% of running time
(10 / 23816 ms)

10 ms : wav-encode.rkt:51:16

13

$ racket funky-town-profile.rkt

Contracts account for 73.77% of running time
(17568 / 23816 ms)

6210 ms : Array-unsafe-proc
(—> Array (-> (vectorof Int) any))

3110 ms : array-appendx*

(—>* ((listof Array)) (Int) Array)
2776 ms : unsafe-build-array

(-> (vectorof Int) [...] Array)

Generic sequences account for 0.04% of running time
(10 / 23816 ms)

10 ms : wav-encode.rkt:51:16

14

$ racket funky-town-profile.rkt

Contracts account for 73.77% of running time

Report costs per

feature / instance

Generic sequences account for 0.04% of running time
(10 / 23816 ms)

10 ms : wav-encode.rkt:51:16

15

Reporting costs per feature instance

<linguistic feature> : <total cost>
<cost> : <instance>
<cost> : <instance>

Output Generic sequences
E g Casts Security checks

Marketplace processes Contracts

Pattern matching Method dispatch

Keyword arguments Backtracking

16

Reporting costs per feature instance

(define (sawtooth-wave ..

Pattern Matching : 1000ms

600ms : sequencer.rkt:23 ey
200ms : drum.rkt:52 ... (harmonics

eel))

...

T — T —

Instance ~ Source location

-

17

Reporting costs per feature instance

Checked Casts : 400ms (define (emit-wav-file ..
200ms : drum.rkt:17 .(éa:\st sound-samples
100ms : mixer.rkt:34 (Arrayof Float))

eel)

T — T —

Instance ~ Source location

-

18

Reporting costs per feature instance

math/array

Contracts : 2400ms
1300ms : make-waveform
500ms : generate-chord

- ,} math/trig

1 instance: Costs in N locations

19

Reporting costs per feature instance

(define (tcp-serve ...

ce)

Marketplace Processes : 1300ms (spawn 53587
800ms : (tcp-serve 53588) (tcp-serve)

400ms : (tcp-serve 53587) —
« oo (spawn 53588
(tcp-serve)

ces)

1 location: N instances

T —

20

Contracts account for 73.77% of running time
(17568 / 23816 ms)

6210 ms : Array-unsafe-proc

(=> Array (-> (vectorof Int) any))
3110 ms : array-appendx*

(—>* ((listof Array)) (Int) Array)
2776 ms : unsafe-build-array

(-> (vectorof Int) [...] Array)

- Report costs per feature instance
- 1 instance: Costs in N locations

- Solution: fix contract usage

21

math/array

Untyped Typed

component

Value

component

R\
- .\}(::

math/trig

Proxied value

Contract boundary

22

aee

Typed

component

Typed

component

math/array

math/trig

23

aee

I @ math/array
Tvned Twvned

$ racket funky-town.rkt
th/trig

cpu time: 12s

| Value

24

The Library Author's View

How to extend the tool

25

Architecture

Instrumentation inside libraries/DSLs

Sa molin Q Protocol
pling N
thread *

}

Offline analysis

— ——

[

\
contracts.rkt

~

26

Stack e

sawtooth-wave

generate-note

sequence

Observing Feature Code

27

Stack e

Observing Feature Code

check-vector (define (sawtooth-wave ..
A ? (make-waveform ...)
rrayo elcontract N .)

sawtooth-wave make-waveform

generate—-note

sequence

Mark present = Feature code is running

-

28

Observing Feature Code

'contract
t=14 {make—waveform}
(define (sawtooth-wave ...)

che‘-vecx\
A ? (make-waveform ...)
rray: (_’contract)
sawtooth-wave make-waveform —

generate-note

Stack e

sequence

Mark present = Feature code is running

29

Stack e

Observing Feature Code

harmonics
match-case (define (sawtooth-wave ..
match-bind ___'pattern-matching ‘ (match signal
sawtooth-wave sequencer.rkt:23 [<pattern>
... ((harmonics ...)d
generate-note)

Mark present = Feature code is running

-

30

Stack e

Observing Feature Code

match-case (define (sawtooth-wave ..
match-bind 'pattern-matching (match signal
sawtooth-wave sequencer.rkt:23 [<pattern>
... ((harmonics ...)d
generate-note)

Mark present = Feature code is running

-

31

harmonics

Observing Feature Code

(_’ pattern-matching

match-case

antimark (define (sawtooth-wave ...)

match-bind

'pattern-matching (match signal

sawtooth-wave

generate-note

sequencer.rkt:23 [<pattern>
... ((harmonics ...)d
ee))

Stack e

sequence

Antimark

on top = Feature code is not running

32

hinonics

Observing Feature Code

t=17)

(_’ pattern-matching

match-case

antimark (define (sawtooth-wave ...)

match-bind

'pattern-matching (match signal

Stack e

sawtooth-wave

generate-note

sequencer.rkt:23 [<pattern>
... ((harmonics ...)d
ee))

sequence

Antimark on top = Feature code is not running

33

If you still have room

Offline analysis
In the paper

Structurally rich features
In the paper

Instrumentation control
In the paper

34

The Tool Builder's View

How to build a similar tool

35

Necessary Ingredients

- Stack marking

= Continuation marks (Racket, JavaScript, .Net, R)
® Stack reflection (Smalltalk), stack introspection (GHC), etc.

>
- Sampling thread '\

. Protocol (see previous section)

- Offline analysis

If you have those, you can build an FSP!

36

Future Work: Beyond Racket

- Works in Racket. Elsewhere?

.- Ongoing work: «

* Features: Object slices, summaries, etc.

* Implementing continuation marks is easy!

37

Future Work: Beyond Sampling

- Event-based profiling
L e.g. log messages

- Feature entry/exit events + timestamps

- No marking necessary!

38

Evaluation

How well does the tool work

39

Performance Impact

Experiment

Take existing Racket programs
Run the feature-specific profiler
Fix uses of features mentioned in
the report

Measure performance impact

(running time)

Normalized time

O
O

Execution time, lower is better

Before:
After:

—

Non-optimized

Fixed feature usage

1

el

.8

Instrumentation Effort

Feature

Contracts

Output

Generic sequences
Casts and assertions
Parser backtracking
Security policies
Marketplace processes
Pattern matching
Method dispatch

Keyword arguments

LOC
183 Reasonable for

1 library creators
18

37
18
23

35 minutes for creator!
7 < —
38

. (+ 40 for extra analysis)

12
50

41

The take-away

The take-away

* Reporting costs in terms of feature instances
* Extensible via marking + sampler protocol

* Build yours using stack marking and sampling

43

/
\//u\/(The take-away
=

* Reporting costs in terms of feature instances
* Extensible via marking + sampler protocol

* Build yours using stack marking and sampling

download.racket-lang.org

raco pkg install feature-profile

44

