
Experience Report: Applying Random
Testing to a Base Type Environment

Vincent St-Amour
PLT @ Northeastern University
stamourv@racket-lang.org

Neil Toronto
PLT @ Brigham Young University

ntoronto@racket-lang.org

Abstract
As programmers, programming in typed languages increases our
confidence in the correctness of our programs. As type system de-
signers, soundness proofs increase our confidence in the correct-
ness of our type systems. There is more to typed languages than
their typing rules, however. To be usable, a typed language needs
to provide a well-furnished standard library and to specify types for
its exports.

As software artifacts, these base type environments can rival
typecheckers in complexity. Our experience with the Typed Racket
base environment—which accounts for 31% of the code in the
Typed Racket implementation—teaches us that writing type envi-
ronments can be just as error-prone as writing typecheckers.

We report on our experience over the past two years of using
random testing to increase our confidence in the correctness of the
Typed Racket base environment.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Random testing, Type environments, Numeric towers

1. Types as Specifications
Typecheckers prove claims about the run-time execution of pro-
grams. Programmers and compilers depend on the validity of these
claims when they reason about programs. The correctness of these
claims depends not only on the correctness of the underlying type
system, but also on the correctness of the base type environment of
the language. The type for any given primitive operation must be
consistent with the operation’s run-time behavior.

In languages with sophisticated type systems, types can en-
code precise specifications for primitive operations. For example
Alms (Tov and Pucella 2011) uses session types to encode mutual
exclusion for lock operations, Vault (DeLine and Fähndrich 2001)
uses typestate to encode protocols in the types of its networking
primitives, and FISh (Jay 1999) uses shape types to encode the ef-
fect matrix operations have on matrix shapes. Such specifications
can be subtle, making the encoding process error-prone.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500616

Typed Racket (Tobin-Hochstadt and Felleisen 2008) provides a
rich numeric tower (St-Amour et al. 2012) similar to those provided
by languages in the Lisp and Smalltalk families of languages, and
it encodes precise type-based specifications for its numeric oper-
ations. The fine-grained types offered by the type system and the
flexibility of the language’s numeric operations result in large and
complex specifications. Errors and oversights in these specifica-
tions have been a major source of bugs in Typed Racket.

The functional programming community has a successful his-
tory of using random testing (Claessen and Hughes 2000) to find
bugs in programs ranging from undergraduate coursework (Page
et al. 2008) to full-scale language models (Berghofer and Nip-
kow 2004; Klein et al. 2012; Klein et al. 2013). Inspired by these
success stories, we decided to investigate whether random testing
would help us detect bugs in the Typed Racket base environment—
specifically in the implementation of its numeric tower. We report
on our successful experience using PLT Redex (Felleisen et al.
2009) to build a random tester that we have been using for this
task over the last two years.

The rest of the paper is organized as follows: section 2 pro-
vides background on the Typed Racket numeric tower, section 3
describes our random testing strategy, section 4 presents techniques
we used to increase the effectiveness of our random tester, section 5
summarizes positive and negative aspects of our experiences and
section 6 concludes.

2. The Typed Racket Numeric Tower
Typed Racket’s approach to numeric types and operations—its
numeric tower (St-Amour et al. 2012)—is inspired by those of
untyped languages in the Lisp and Smalltalk families.

Numeric towers typically provide a deep hierarchy of numeric
types including, in the case of Typed Racket, fixed-width and un-
bounded integer types, arbitrary-precision rational numbers, both
single and double-precision floating-point numbers, and complex
numbers. Numeric towers support generic and flexible numeric op-
erations that accept numbers of any type, support mixed-type arith-
metic—that is, programmers can freely mix and match numeric
types such as Integer and Float—and always produce results
with the most precise representation available.

In Typed Racket, the types of numeric operations include pre-
cise specifications of their flexible run-time behavior. Given the
complexity of these behaviors, their specifications are often large
and brittle.

The operations themselves are implemented in C as part of the
Racket (Flatt and PLT 2010) runtime system and not in Typed
Racket itself. This rules out the option of having the typechecker
automatically infer—or even check—their types. The Typed Racket
implementers must therefore manually assign types to each of
them, a laborious and therefore error-prone process.

2.1 Specifications for Numeric Operations
In Typed Racket, numeric types can encode not only numeric lay-
ers—whether a number is an integer, a floating-point number, or a
complex number—but also sign and range properties. For example,
Typed Racket provides a Positive-Float type which only in-
cludes positive floating-point numbers and is a subtype of the more
general Float type, which includes all floating-point numbers.

Types such as Byte and Fixnum impose range constraints on
their members, the former including integers between 0 and 255
and the latter including all exact integers that can be represented in
a tagged machine word. These types are related to each other via
subtyping: Byte is a subtype of Fixnum, which is in turn a subtype
of Integer—the type that contains all integers regardless of bit-
width. Range-bounded types can be further partitioned by sign, to
obtain for instance Positive-Byte or Negative-Fixnum.

Specifications for numeric operations—such as +, round and
sqrt—can take advantage of the fine-grained distinctions encoded
in these types to precisely describe the behavior of those operations.
For example, the specification of the sqrt function expresses that
the Nonnegative-Real type is closed under sqrt, but that it
returns Complex numbers in the general case.

Types also encode the coercion rules that govern mixed-type
arithmetic. For example, the specification of the + function ex-
presses that the addition of an Integer and a Float returns a
Float.

2.2 Encoding Specifications as Types
Typed Racket encodes specifications for numeric operations as
ordered intersections of function types. That is, each property is
individually encoded as a function type; all these properties are then
intersected using Typed Racket’s case-> type constructor.

For example, the closure property of integers under addition is
expressed using this function type,

[Integer Integer -> Integer]

the contagion rule for integer-float mixed-type arithmetic is ex-
pressed with these two function types

[Integer Float -> Float]
[Float Integer -> Float]

and sign preservation is encoded in these two function types

[Positive Positive -> Positive]
[Negative Negative -> Negative]

To build the type of + we intersect these properties, and all
others that hold about addition:

(: + (case->
[Zero Zero -> Zero]
...
[Fixnum Zero -> Fixnum]
[Zero Fixnum -> Fixnum]
...
[Integer Integer -> Integer]
...
[Integer Float -> Float]
[Float Integer -> Float]
[Float Float -> Float]
...
[Positive Positive -> Positive]
[Negative Negative -> Negative]
...))

Each side of a symmetric property needs to be encoded as a
separate function type and, because of Typed Racket’s checking
rule for intersection types, additional function types are required

for each case where two or more properties intersect. As a result,
types for numeric primitives become large and complicated. For
example, the type of + is an intersection type with 147 clauses while
the type of * has 209 clauses.

3. Random Testing Strategy
Types for numeric operations have been a significant source of
bugs in Typed Racket. Of the 576 reported Typed Racket bugs,
63 (10.9%) can be traced back to the types of numeric operations,
and 39 others (6.8%) can be traced back to other parts of the base
type environment. Such bugs signal a mismatch between the type
of an operation and the run-time behavior of the operation. Since
we consider the run-time behavior of the numeric primitives to be
the correct semantics, types need to be fixed when bugs are found.

The Typed Racket developers have spent time and effort manu-
ally testing the type environment,1 but manual testing alone is in-
sufficient. Handwritten tests often either test properties in isolation,
or test combinations of a small number of properties together. Most
combinations remain unexplored, including some in which proper-
ties combine to create interesting corner cases. We used random
testing to improve the coverage of our test suite and find bugs be-
fore they cause problems in the real world.

3.1 Random Testing with PLT Redex
PLT Redex (Felleisen et al. 2009) is an embedded domain-specific
language—built inside of Racket (Flatt and PLT 2010)—for defin-
ing and mechanizing executable language models. A typical mod-
eling workflow with Redex is as follows. First, users define a gram-
mar and a reduction semantics for their language. Then, they write
functions that encode properties that they expect to hold about
terms in their language, such as type soundness (Tobin-Hochstadt
and Felleisen 2008) or determinism (Kuper and Newton 2012). Af-
terwards, they write test cases to check whether the property holds
for specific terms.

Redex also provides support for random testing (Klein and
Findler 2010), inspired by QuickCheck (Claessen and Hughes
2000). Redex’s random testing facility, redex-check, takes as
input a language grammar and a property expressed about terms
in that language, generates random terms and checks whether the
desired property holds. It has been previously used to find mistakes
in nine ICFP 2009 papers (Klein et al. 2012) and to find bugs in a
model of the Racket virtual machine (Klein et al. 2013).

3.2 Testing Type Preservation
We designed a language of arithmetic terms using Redex. The
structure of the language is simple: it consists only of arithmetic
expressions, with numbers at the leaves and arithmetic operations
as the internal nodes. To detect discrepancies between types and
run-time behavior, we test type preservation on randomly generated
terms in this language. The process is as follows:

1. Our tester generates a random arithmetic expression.

2. It then invokes the Typed Racket typechecker on the expression.

3. If the expression is ill-typed, the tester rejects it and starts again
with a new expression.

4. Otherwise, the tester asks the Typed Racket implementation to
evaluate the expression.

5. It invokes the Typed Racket typechecker to typecheck the result.

If the type of the result is not a subtype of the type of the original
expression, then the claim made by the typechecker does not hold

1 The Typed Racket test suite has over 10,000 lines of handwritten tests.

and the tester has found a discrepancy. The result is unsound,
almost always due to a bug in the type environment.

We encoded this preservation property as a Racket function
which redex-check then applies to random terms.

3.3 Example: Floating-Point Underflow Bug
To illustrate this process, let us examine an example bug we found
using random testing. Consider this excerpt from the type we orig-
inally assigned to Racket’s hyperbolic sine function, sinh:

(: sinh (case->
[Float-Zero -> Float-Zero]
[Positive-Float -> Positive-Float]
[Negative-Float -> Negative-Float]
...))

Mathematically, the hyperbolic sine function maps zero to zero,
positive reals to positive reals, and negative reals to negative reals.
The above type encodes this mathematical statement.

Now consider the following randomly generated term:

(sinh 1.2535e-17)

Since 1.2535e-17 is of type Positive-Float, the entire expres-
sion should be of type Positive-Float, given the type of sinh
above. However, the term evaluates to 0.0 which, in Typed Racket,
is of type Float-Zero. The type Float-Zero is not a subtype
of Positive-Float, which includes only positive floating-point
numbers. Thus, the type fragment above does not accurately reflect
the runtime behavior of sinh.

For values of x sufficiently close to zero, sinh(x) is too small
to represent as a floating-point number, causing an underflow. We
therefore need to correct the above type to account for this subtle
corner case. This revised type fragment, taken from the current type
of sinh, addresses this issue:

(: sinh (case->
[Float-Zero -> Float-Zero]
[Positive-Float -> Nonnegative-Float]
[Negative-Float -> Nonpositive-Float]
...))

4. Improving Random Test Case Generation
Since we applied random testing to a specific domain—numeric
operations—we were able to leverage domain constraints to im-
prove the quality of randomly generated test cases. With higher-
quality test cases, we were able to find more bugs with fewer at-
tempts than by using Redex’s test case generation directly.

We improved the quality of test cases in two ways. First, we in-
creased the probability of generating well-typed terms. Second, we
used specialized random number generation to generate numeric
corner cases with higher probability.

4.1 Generating Well-Typed Terms
Testing type preservation makes sense only for terms that are well-
typed in the first place; our test infrastructure automatically rejects
ill-typed terms. Therefore, to minimize wasting time on generating
unusable terms, we engineered our grammar to generate well-typed
terms with high probability.

When first designing our term grammar, a key design decision
was to only allow trees of literal numbers and arithmetic operations
as expressions. Variables and binders do not appear in the grammar,
and thus cannot appear in the generated terms. This not only guar-
antees that the generated terms are closed, but it also rules out—by
construction—terms that contain variables whose types are incon-
sistent between definition and use sites. Since we are interested in

Strategy % of rejected terms
(lower is better)

Baseline 57.6%
+ integer non-terminal 45.3%
+ float non-terminal 41.1%
+ integer and float non-terminals 1.6%

Figure 1: Percentage of rejected terms by generation strategy

testing the types of numeric operations, there is no loss of gen-
erality; adding binders and variables would not uncover bugs that
would not have been found otherwise.

That choice proved effective in practice. As the first row of
figure 1 shows, only around half of the generated terms were ill-
typed using our first attempt at a grammar.

Looking at the ratio of rejected terms does not tell the whole
story, however. Most numeric operations in Typed Racket accept
any kind of number as input—the + function accepts, e.g., inte-
gers and complex numbers alike. Other operations—which we call
type-limited operations—accept inputs only from a portion of the
numeric tower. For example, modulo accepts only integers, and
fl+ is a floating-point specific addition operation. By looking at
a sample of rejected terms, we noticed that terms containing type-
limited operations accounted for most of the rejections.

Those rejected terms most often featured subexpressions of type
Float (or one of its subtypes) used as arguments to integer-specific
functions. Because the inexactness of floating-point numbers is
“contagious” for most operations, randomly generated terms are
more likely to evaluate to floating-point numbers than to integers.
Less common were rejected terms containing float-specific opera-
tions receiving integers or complex numbers as arguments.

Since terms containing type-limited operations were more likely
to be rejected than other terms, type-limited operations were under-
tested compared to other operations. Types of type-limited opera-
tions are not, on average, significantly simpler than types of other
numeric operations; testing type-limited operations adequately is
thus important.

While the types of numeric operations distinguish input types
at a fine-grained level—e.g. they distinguish by sign, range, etc.—
they all possess a most general domain that is a supertype of all
its other domains. For example, while the + function distinguishes
between the addition of two positive integer and the addition of
two negative integers and assigns different types to the results of
the two expressions, it accepts any value of type Number, which is
a supertype of all its other valid input types.

The most general domains of the vast majority of type-limited
operations belong to a small set of types: Integer, Float and
Real. Furthermore, the most general domains of most type-limited
operations are closed under those operations. Armed with these two
observations, we refactored our arithmetic expression grammar so
that it included an additional non-terminal for each of these types.

The productions for these non-terminals include literal numbers
of that type, as well as type-limited operations with the appropriate
most general domain. In addition, these non-terminals include pro-
ductions for other, non-type-limited operations on which the non-
terminal’s type is closed. For example, to test the portion of the
type of + that handles values of type Integer and its subtypes,
we added productions that generate addition terms to the integer
non-terminal. Figure 2 shows an abbreviated version of the result-
ing grammar. The define-language form takes the name of the
language as its first argument, and each subsequent clause defines
a non-terminal, in which the first element of the clause is the non-
terminal’s name and the remaining elements are productions.

(define-language tr-arith

; Float and its subtypes
[F* (random-float) F]
[F (* F* F*) (+ F* F*) (- F* F*) (/ F* F*)

(max F* F*) (min F* F*) (abs F*)
(floor F*) (ceiling F*)
(truncate F*) (round F*)
(cos F*) (sin F*) (tan F*)
...
; float-specific operations
(fl+ F* F*) (fl- F* F*)
(fl* F* F*) (fl/ F* F*)
(flmin F* F*) (flmax F* F*) (flabs F*)
...]

; Integer and its subtypes
[I* (random-integer) I]
[I (* I* I*) (+ I* I*) (- I* I*)

(max I* I*) (min I* I*) (abs I*)
...
; integer-specific operations
(modulo I* I*) (remainder I* I*)
(quotient I* I*) (gcd I* I*) (lcm I* I*)
...]

; any numeric type
[E* (random-number) E F I]
[E (* E* E*) (+ E* E*) (- E* E*) (/ E* E*)

(max E* E*) (min E* E*) (abs E*)
(floor E*) (ceiling E*)
(truncate E*) (round E*)
(sqrt E*) (log E*) (exp E*)
(cos E*) (sin E*) (tan E*)
...])

Figure 2: Abbreviated grammar for Typed Racket arithmetic ex-
pressions

This grammar refactoring significantly lowered the term rejec-
tion rate. Figure 1 shows the impact of the additional non-terminals
on the rejection rate. In turn, this refactoring increased the amount
of testing of type-limited operations.

4.2 Generating Numeric Corner Cases
In addition to reducing the ratio of rejected test cases, we were
also interested in increasing the ratio of bugs found per test case.
Most of the bugs we had found in Typed Racket’s numeric types
were related to numeric corner cases, that is, cases where the usual
rules governing the behavior of numeric operations do not apply.
Corner cases lead to counter-intuitive behavior, which we—as type
environment designers—often overlook and forget to encode as
part of numeric types.

Based on our corpus of numeric tower-related bugs, we iden-
tified three main sources of corner cases: mixed-type arithmetic,
special values and representation limitations. A key observation is
that corner cases are not uniformly distributed across the entire nu-
meric tower. To increase the likelihood that individual test cases
would trigger a bug, we engineered random number generation to
generate these three cases on a regular basis, while still adequately
testing the common cases.

4.2.1 Mixed-type arithmetic
Mixed-type arithmetic exercises the coercion and contagion rules
of numeric primitives described in section 2.2. These rules are
quite complex and not always intuitive, which makes the portions
of numeric types that deal with mixed-type arithmetic especially
error-prone.

To trigger mixed-type arithmetic, the random generator we
use for real numbers picks a numeric layer at random, then calls
the relevant layer-specific generator. Specifically, the random-
integer->random-real function, shown in figure 3, takes as
argument a random integer provided by the Redex random test
generator and returns a random real number from a random layer.

Using this technique, random terms generated for the “any nu-
meric type” non-terminal are highly likely to feature mixed-type
arithmetic. Furthermore, the “any numeric type” expressions can
have subexpressions drawn from type-limited expressions, which
also introduces mixed-type arithmetic.

4.2.2 Special values
When it comes to special values, such as the floating-point infini-
ties, NaN and the floating-point zeroes, numeric primitives deal
with these as special cases, usually mirrored by special cases in
numeric types.

Integer 0 is also often handled as a special case. For example, 0
is the null element of multiplication, and causes the * function to
ignore all coercion and contagion rules. Instead it returns 0 directly,
and that must be reflected in the type.

To ensure an adequate representation of special values, we al-
locate portions of the random distributions specifically to them. As
the last three conditional clauses in figure 4 show, NaN and each of
the two floating-point infinities are generated with probability 0.05
when generating floating-point numbers. The floating-point zeroes
are similarly special-cased. Special values in other layers—such as
integer 0, and the single-precision floating-point special values—
are handled similarly.

4.2.3 Representation Limitations
Because of limitations of numeric representations, properties that
we expect to hold about mathematical functions may not hold of
their implementations in the standard library. Since we rely heavily
on our intuition about mathematical functions when assigning types
and often overlook the specifics of numeric representations, such
limitations are a frequent source of bugs.

Bugs due to overlooking floating-point underflow—as dis-
cussed in section 3.3—are examples of bugs due to representation
limitations. Other examples include floating-point overflow and au-
tomatic fixnum to bignum promotion when integer values exceed a
certain range.

To ensure that these cases are exercised, we reserve part of the
distribution for values that are near representation boundaries—
e.g. extremely small or extremely large floating-point numbers or
integers just small enough to be represented as fixnums. Figure 4
also shows the generation of floating-point numbers in these ranges.

To quantify the effectiveness of these reserved portions of the
distribution, we attempted to trigger the underflow bug discussed
in section 3.3 by generating random applications of the sinh func-
tion. Without these reserved portions of our distribution, we gen-
erated five million random terms and none of them triggered the
bug. With those reserved portions, we executed 10 test runs. For
each run, the bug was always triggered within 29 attempts, with 7
attempts being neccessary on average.

(define (random-integer->random-real i)
(define r (random))
; probability 0.25 each
(cond
[(< r 0.25)
i] ; random integer

[(< r 0.5)
(random-integer->random-rational i)]

[(< r 0.75)
(random-integer->random-flonum i)]

[else ; single-precision flonum
(random-integer->random-single i)]))

Figure 3: Allocation of random numbers to layers

(define (random-integer->random-flonum i)
(define r (random))
(cond

; 0.25: laplace-distributed with scale i
[(< r 0.25) (random-laplace (abs i))]

; 0.25: uniform bits
[(< r 0.5) (random-uniform-flonum)]

; 0.35: very small or very large
[(< r 0.85)
(define r (random))
(cond [(< r 0.5)

(define x (ordinal->flonum i))
(if (= x 0.0)

; special case: float zeroes
(if (< (random) 0.5) 0.0 -0.0)
x)]

[(< r 0.75)
(flstep -inf.0 (abs i))]

[else
(flstep +inf.0 (- (abs i)))])]

; 0.05 each: +nan.0, +inf.0, -inf.0
[(< r 0.9) +nan.0]
[(< r 0.95) +inf.0]
[else -inf.0]))

Figure 4: Random generation of floating-point numbers

5. Lessons Learned
Randomly testing the Typed Racket base environment has been
a success. We achieved our goal of automatically finding bugs
in the Typed Racket environment. Based on our experience, we
recommend using Redex-based random testing to typed language
implementers looking to test their type environments.

This section provides some details on positive and negative
aspects of our experience.

5.1 What Worked
Random testing shined for some aspects of our project. Of them,
the following should be of general interest to other typed language
implementers.

Finding bugs Our random tester successfully found a large num-
ber of bugs. These bugs had not been found through manual testing,
which suggests that random testing and manual testing complement
each other.

Some of the bugs uncovered by random testing had already been
reported by users (but had not been fixed yet). Our random checker
created test cases that were often more useful as starting points
for the debgugging phase than user-provided test cases. Randomly
generated terms tended to be small compared to user-provided test
cases, which were often complete functions. Furthermore, random
test cases included numeric operations only which again narrowed
down debugging significantly.

Testing the full implementation Our random tester calls out to
the Typed Racket implementation directly both to typecheck terms
and to evaluate them. Redex can call arbitrary Racket code, which
made this workflow convenient. Being able to test the actual Typed
Racket implementation, rather than testing a separate model, was
key to effectively finding bugs.

Confidence when refactoring The Typed Racket numeric tower
is in constant evolution. We need to assign new types when new
primitives are added to the Racket runtime, and we constantly
revise the design of Typed Racket’s numeric tower to improve its
usability. The addition of a random tester makes us much more
confident when refactoring the numeric tower. We follow each
change to numeric types with a round of random testing, in addition
to manual testing.

For example, in July 2012, the first author undertook a major
change in the design of the numeric tower: for usability reasons,
we decided to include NaN as a valid value to all non-singleton
floating-point types. This refactoring required changing the major-
ity of the types of float-specific operations, and of many generic
operations as well—several days of work. Without a random tester,
the chances of introducing subtle bugs and not detecting them
would have made such a refactoring terrifying. In the end, we
may even have decided against it, and left the usability issue un-
addressed.

With random testing as part of the development cycle, however,
the refactoring was a success. We implemented a first version of
the new types, ran the random checker, fixed the bugs it found,
and repeated the process. When short test runs stopped revealing
bugs, we let the checker run overnight. Eventually, we trusted our
refactoring and released it. So far, no bug has been reported that
could be traced to it.

Low effort required Writing the first version of the random tester
took the first author, who had no previous experience with Re-
dex, about two hours. That initial effort resulted in a working ran-
dom generator that successfully found bugs. Racket’s extensive
math library made our subsequent experimentation with random
distributions—described in section 4—easy.

Continuous integration Our random tester is run every time a
change is committed to the Racket code base. DrDr,2 Racket’s
continuous integration system, runs one thousand random test cases
on every change, in addition to running the manually written Typed
Racket test suite. Random testing accounts for about a minute and
a half of this process.

In general, continuous integration is useful to detect regressions.
When combined with random testing, it also increases test coverage
by running new random test cases every time a change is made.

2 drdr.racket-lang.org

file:drdr.racket-lang.org

5.2 What Could Have Worked Better
While we were developing our random tester, we encountered three
limitations of Redex. None were show-stoppers—we successfully
worked around them—but they nonetheless slowed us down.

Type system integration We needed to manually adjust our gram-
mar to produce well-typed terms as often as possible. In doing so,
we manually encoded aspects of the Typed Racket type system as
part of our grammar. Changes to the type system may accidentally
cause an increase of the test case rejection rate and require manual
changes to the grammar. Had Redex been able to use our type sys-
tem to guide its random generation, this effort would not have been
necessary.

Default random number generation Redex provides a random
number generator as part of its random testing support. It generates
numbers from the full range of Racket’s numeric types—including
fractions and complex numbers—which made it a good starting
point. Due to its inability to generate corner cases sufficiently often,
however, we eventually replaced it with our own custom random
number generator.

Test case reduction While randomly generated test cases were
usually smaller than user-provided test cases, they were often larger
than necessary. Often, only one or two of a test case’s operations
would be relevant to the exposed bug. Therefore, the first step of
our response to failing test cases is to find which part of the term
triggers the bug and isolate it. Had Redex provided test case reduc-
tion, our debugging cycle would have been significantly shorter.

6. Conclusion
Based on our experience with Typed Racket over the last two years,
we have found that random testing is an effective technique for
increasing confidence in a language’s base type environment.

With only a small amount of effort, we were able to implement
a basic random tester and uncover bugs. With a modest amount of
additional work, we were able to increase the effectiveness of our
tester significantly. As a result of those efforts, the Typed Racket
base type environment is now much more robust than it was two
years ago.

Acknowledgments We thank Casey Klein and Robby Findler
for suggesting that we use random testing to find bugs in the
Typed Racket numeric tower. This work has been supported by
the NSERC.

Bibliography
Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In

Proc. Conf. on Software Engineering and Formal Methods, pp. 230–
239, 2004.

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for ran-
dom testing of Haskell programs. In Proc. International Conf. on Func-
tional Programming, pp. 268–279, 2000.

Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in
low-level software. In Proc. Conf. on Programming Language Design
and Implementation, pp. 59–69, 2001.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics
Engineering with PLT Redex. MIT Press, 2009.

Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-1,
2010. http://racket-lang.org/tr1/

C. Barry Jay. Programming in FISh. International Journal on Software
Tools for Technology Transfer 2(3), pp. 307–315, 1999.

Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias
Felleisen, Matthew Flatt, Jay McCarthy, Jon Rafkind, Sam Tobin-
Hochstadt, and Robert Bruce Findler. Run your research: on the effec-
tiveness of lightweight mechanization. In Proc. Symp. on Principles of
Programming Languages, pp. 285–296, 2012.

Casey Klein and Robert Bruce Findler. Randomized testing in PLT Redex.
In Proc. Works. Scheme and Functional Programming, pp. 26–36, 2010.

Casey Klein, Matthew Flatt, and Robert Bruce Findler. The Racket virtual
machine and randomized testing. Higher-Order and Symbolic Compu-
tation, 2013.

Lindsey Kuper and Ryan Newton. A lattice-theoretical approach to deter-
ministic parallelism with shared state. Indiana University, TR702, 2012.

Rex Page, Carl Eastlund, and Matthias Felleisen. Functional programming
and theorem proving for undergraduates: a progress report. In Proc.
Works. Functional and Declarative Programming in Education, pp. 21–
30, 2008.

Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and Matthias
Felleisen. Typing the numeric tower. In Proc. Practical Aspects of
Declarative Languages, pp. 289–303, 2012.

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implemen-
tation of Typed Scheme. In Proc. Symp. on Principles of Programming
Languages, pp. 395–406, 2008.

Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proc. Symp. on
Principles of Programming Languages, pp. 447–458, 2011.

http://racket-lang.org/tr1/

	1 Types as Specifications
	2 The Typed Racket Numeric Tower
	2.1 Specifications for Numeric Operations
	2.2 Encoding Specifications as Types

	3 Random Testing Strategy
	3.1 Random Testing with PLT Redex
	3.2 Testing Type Preservation
	3.3 Example: Floating-Point Underflow Bug

	4 Improving Random Test Case Generation
	4.1 Generating Well-Typed Terms
	4.2 Generating Numeric Corner Cases
	4.2.1 Mixed-type arithmetic
	4.2.2 Special values
	4.2.3 Representation Limitations

	5 Lessons Learned
	5.1 What Worked
	5.2 What Could Have Worked Better

	6 Conclusion
	Bibliography

