
Feature-Specific Profiling

Vincent St-Amour, Leif Andersen, and Matthias Felleisen

PLT @ Northeastern University
{stamourv,leif,matthias}@ccs.neu.edu

Abstract. High-level languages come with significant readability and maintain-
ability benefits. Their performance costs, however, are usually not predictable, at
least not easily. Programmers may accidentally use high-level features in ways
that compiler writers could not anticipate, and they may thus produce underper-
forming programs as a result.

This paper introduces feature-specific profiling, a profiling technique that re-
ports performance costs in terms of linguistic constructs. With a feature-specific
profiler, a programmer can identify specific instances of language features that
are responsible for performance problems. After explaining the architecture of
our feature-specific profiler, the paper presents the evidence in support of adding
feature-specific profiling to the programmer’s toolset.

1 Weighing Language Features

Many linguistic features,1 come with difficult-to-predict performance costs. First, the
cost of a specific use of a feature depends on its context. For instance, use of reflection
may not observably impact the execution time of some programs but may have disas-
trous effects on others. Second, the cost of a feature also depends on its mode of use; a
higher-order type coercion tends to be more expensive than a first-order coercion (see
section 2).

When cost problems emerge, programmers often turn to performance tools such as
profilers. A profiler reports costs, e.g., time or space costs, in terms of location, which
helps programmers focus on frequently executed code. Traditional profilers, however,
do little to help programmers find the cause of their performance woes or potential solu-
tions. Worse, some performance issues may have a unique cause and yet affect multiple
locations, spreading costs across large swaths of the program. Traditional profilers fail
to produce actionable observations in such cases.

To address this problem, we propose feature-specific profiling, a technique that re-
ports time spent in linguistic features. Where a traditional profiler may break down exe-
cution time across modules, functions, or lines, a feature-specific profiler assigns costs
to instances of features—a specific type coercion, a particular software contract, or an
individual pattern matching form—whose actual costs may be spread across multiple
program locations.

1 With “linguistic feature” we mean the constructs of a programming language itself,
combinator-style DSLs as they are especially common in the Haskell world, or “macros” ex-
ported from libraries, such as in Racket or Rust.

Feature-specific profiling complements a conventional profiler’s view of program
performance. In many cases, this orthogonal view makes profiling information action-
able. Because these profilers report costs in terms of specific features, they point pro-
grammers towards potential solutions, e.g., using a feature differently or avoiding it in
a particular context.

In this paper, we

– introduce the idea of feature-specific profiling,
– explain the architecture of our prototype and its API for feature plug-ins,
– and present an evaluation of our prototype covering both the actionability of its

results and the effort required to implement plug-ins.

The rest of this paper is organized as follows. In section 2 we describe the features that
we chose to support in our prototype. In section 3 we outline the architecture of our
framework and provide background on its instrumentation technique. In sections 4 and
5 we describe the implementation in detail. We present evaluation results in section 6,
then explain the limitations of our architecture, relate to existing work, and conclude.

2 Feature Corpus

In principle, a feature-specific profiler should support all the features that a language of-
fers or that the author of a library may create. This section presents the Racket (Flatt and
PLT 2010) features that our prototype feature-specific profiler supports, which includes
features from the standard library, and from three third-party libraries. The choice is
partially dictated by the underlying technology; put differently, the chosen technology
can deal with linguistic features whose dynamic extent obeys a stack-like behavior.

The list introduces each feature and outlines the information the profiler provides
about each. We provide additional background for three features in particular—contracts,
Marketplace processes (Garnock-Jones et al. 2014), and parser backtracking—which
are key to the evaluation case studies presented in section 6.1.

We have identified the first four features below, as well as contracts and parser back-
tracking, as causes of performance issues in existing Racket programs. Marketplace
processes hinder reasoning about performance while not being expensive themselves.
The remaining constructs are considered expensive, and are often first on the chopping
block when programmers optimize programs, but our tool does not discover a signifi-
cant impact on performance in ordinary cases. A feature-specific profiler can thus dispel
the myths surrounding these features by providing measurements.

Output Our tool traces time programs spend in Racket’s output subsystem back to
individual console, file or network output function call sites.

Generic sequence dispatch Racket’s iteration forms can iterate over any sequence
datatype, which includes built-in types such as lists and vectors as well as user-defined
types. Operating generically requires dynamic dispatch and imposes a run-time cost.
Our profiler reports which iteration forms spend significant time in dispatch and thus
suggests which ones to replace with specialized iteration forms.

Type casts and assertions Typed Racket, like other typed languages, provides type casts
to help programmers get around the constraints of the type system. Like Java’s casts,
Typed Racket’s casts are safe and involve runtime checks, which can have a negative
impact on performance. Casts to higher-order types wrap values with proxies and are
therefore especially expensive. Our tool reports time spent in each cast and assertion.

Shill security policies The Shill scripting language (Moore et al. 2014) restricts how
scripts can use system resources according to user-defined security policies. Shill en-
forces policies dynamically, which incurs overhead on every restricted operation. Be-
cause Shill is implemented as a Racket extension, it is an ideal test case for our feature-
specific profiler. Our tool succeeds in reporting time spent enforcing each policy.

Pattern matching Racket comes with an expressive pattern matching construct. Our
profiler reports time spent in individual patterns matching forms, excluding time spent
in form bodies.

Optional and keyword argument functions Racket’s functions support optional as well
as keyword-based arguments. To this end, the compiler provides a special function-call
protocol, distinct from, and less efficient than, the regular protocol. Our tool reports
time spent on this protocol per function.

Method Dispatch On top of its functional core, Racket supports class-based object-
oriented programming. Method calls have a reputation for being more expensive than
function calls. Our tool profiles the time spent performing method dispatch for each
method call site, reporting the rare cases where dispatch imposes significant costs.

2.1 Contracts

Behavioral software contracts are a linguistic mechanism for expressing and dynami-
cally enforcing specifications. They were introduced in Eiffel and have since spread to
a number of platforms including Python, JavaScript, .NET and Racket.

When two components—e.g., modules or classes—agree to a contract, any value
that flows from one component to the other must conform to the specification. If the
value satisfies the specification, program execution continues normally. Otherwise, an
exception is raised. Programmers can write contracts using the full power of the host
language. Because contracts are checked dynamically, however, computationally inten-
sive specifications can have a significant impact on program performance.

For specifications on objects (Strickland and Felleisen 2010), structures (Strickland
et al. 2012) or closures (Findler and Felleisen 2002), the cost of checking contracts
is non-local. The contract system defers checking until methods are called or fields
are accessed, which happens after crossing the contract boundary. To predict how of-
ten a given contract is checked, programmers must understand where the contracted
value may flow. Traditional profilers attribute costs to the location where contracts are
checked, leaving it to programmers to trace those costs to specific contracts.

Figure 1 shows an excerpt from an HTTP client library. It provides make-fetcher,
which accepts a user agent and returns a function that performs requests using that user

agent. The HTTP client accepts only those requests for URLs that are on a whitelist,
which it enforces with the underlined contract. The driver module creates a crawler
that uses a fetching function from the http-client module. The crawler then calls
this function to access web pages, triggering the contract each time. Because checking
happens while executing crawler code, a traditional profiler attributes contract costs to
crawl, but it is the contract between http-client and driver that is responsible.

driver.rkt

(require "http-client.rkt" "crawler.rkt")
(define fetch (make-fetcher "fetcher/1.0"))
(define crawl (make-crawler fetch))
... (crawl "etaps.org") ...

http-client.rkt

(provide (contract-out [make-fetcher (-> user-agent? (-> safe-url? html?))]))
(define (make-fetcher user-agent) (lambda (url) ...))
(define (safe-url? url) (member url whitelist))

Figure 1: Contract for an HTTP client

Because of the difficulty of reasoning about the cost of contracts, performance-
conscious programmers often avoid them. This, however, is not always possible. First,
the Racket standard library uses contracts pervasively to preserve its internal invariants
and provide helpful error messages. Second, many Racket programs combine untyped
components written in Racket with components written in Typed Racket. To preserve
the invariants of typed components, Typed Racket inserts contracts at typed-untyped
boundaries (Tobin-Hochstadt and Felleisen 2006). Because these contracts are neces-
sary for Typed Racket’s safety and soundness, they cannot be avoided.

To provide programmers with an accurate view of the costs of contracts and their
actual sources, our profiler provides several contract-related reports and visualizations.

2.2 Marketplace Processes

The Marketplace library allows programmers to express concurrent systems function-
ally as trees of sets of processes grouped within task-specific virtual machines (VMs)2

that communicate via publish/subscribe. Marketplace is especially suitable for building
network services; it has been used as the basis of an SSH server (see section 6.1.2) and
a DNS server. While organizing processes in a hierarchy of VMs has clear software
engineering benefits, deep VM nesting hinders reasoning about performance. Worse,
different processes often execute the same code, but because these processes do not
map to threads, traditional profilers may attribute all the costs to one location.

2 These VMs are process containers running within a Racket OS-level process. The relationship
with their more heavyweight cousins such as VirtualBox, or the JVM, is one of analogy only.

Our feature-specific profiler overcomes both of these problems. It provides process
accounting for their VMs and processes and maps time costs to individual processes,
e.g., the authentication process for an individual SSH connection, rather than the au-
thentication code shared among all processes. For VMs, it reports aggregate costs and
presents their execution time broken down by children.

2.3 Parser Backtracking

The Parsack parsing library3 provides a disjunction operator that attempts to parse al-
ternative non-terminals in sequence. The operator backtracks in each case unless the
non-terminal successfully matches. When the parser backtracks, however, any work it
did for matching that non-terminal does not contribute to the final result and is wasted.

For this reason, ordering non-terminals within disjunctions to minimize backtrack-
ing, e.g., by putting infrequently matched non-terminals at the end, can significantly
improve parser performance. Our feature-specific profiler reports time spent on each
disjunction branch from which the parser ultimately backtracks.

3 The Profiler’s Architecture

Because programmers may create new features, our feature-specific profiler consists
of two parts: the core framework and feature-specific plug-ins. The core is a sampling
profiler with an API that empowers the implementors of linguistic features to create
plug-ins for their creations.

The core part of our profiler employs a sampling-thread architecture to detect when
programs are executing certain pieces of code. When a programmer turns on the profiler,
a run of the program spawns a separate sampling thread, which inspects the stack of the
main thread at regular intervals. Once the program terminates, an offline analysis deals
with the collected stack information, looking for feature-specific stack markers and
producing programmer-facing reports.

The feature-specific plug-ins exploit this core by placing markers on the control
stack that are unique to that construct. Each marker indicates when a feature executes
its specific code. The offline analysis can then use these markers to attribute specific
slices of time consumption to a feature.

For our Racket-based prototype, the plug-in architecture heavily relies on Racket’s
continuation marks, an API for stack inspection (Clements et al. 2001). Since this API
differs from stack inspection protocols in other languages, the first subsection recalls the
idea. The second explains how the implementor of a feature uses continuation marks to
interact with the profiler framework for structurally simple constructs. The last subsec-
tion presents the offline analysis.

3.1 Inspecting the Stack with Continuation Marks

Any program may use continuation marks to attach key-value pairs to stack frames and
retrieve them later. Racket’s API provides two main operations:

3 https://github.com/stchang/parsack

https://github.com/stchang/parsack

– (with-continuation-mark key value expr), which attaches (key, value)
to the current stack frame and evaluates expr.

– (current-continuation-marks [thread]), which walks the stack and re-
trieves all key-value pairs from the stack of an optionally specified thread, which
defaults to the current thread. This allows one thread to inspect the stack of another.

Programs can also filter marks to consider only those with relevant keys using

– (continuation-mark-set->list marks key), which returns the list of val-
ues with that key contained in marks.

Outside of these operations, continuation marks do not affect a program’s semantics.4

Figure 2 illustrates the working of continuation marks with a function that traverses
binary trees and records paths from roots to leaves. Whenever the function reaches an
internal node, it leaves a continuation mark recording that node’s value. When it reaches
a leaf, it collects those marks, adds the leaf to the path and returns the completed path.

; Tree = Number | [List Number Tree Tree]
; paths : Tree -> [Listof [Listof Number]]
(define (paths t)

(cond
[(number? t)
(list (cons t (continuation-mark-set->list (current-continuation-marks) 'paths)))]
[else
(with-continuation-mark 'paths (first t)

(append (paths (second t)) (paths (third t))))]))

> (paths '(1 (2 3 4) 5))
'((3 2 1) (4 2 1) (5 1))

Figure 2: Recording paths in a tree with continuation marks

Continuation marks are extensively used in the Racket ecosystem, notably for the
generation of error messages in the DrRacket IDE (Findler et al. 2002), an algebraic
stepper (Clements et al. 2001), the DrRacket debugger, for thread-local dynamic bind-
ing, and for exception handling. Serializable continuations in the PLT web server (Mc-
Carthy 2010) are also implemented using continuation marks.

Beyond Racket, continuation marks have also been implemented on top of Mi-
crosoft’s CLR (Pettyjohn et al. 2005) and JavaScript (Clements et al. 2008). Other
languages provide similar mechanisms, such as stack reflection in Smalltalk and the
stack introspection used by the GHCi debugger (Marlow et al. 2007) for Haskell.

3.2 Feature-specific Data Gathering

During program execution, feature-specific plug-ins leave feature markers on the stack.
The core profiler gathers these markers concurrently, using a sampling thread.

4 Continuation marks also preserve proper tail call behavior.

Marking The author of a plug-in for the feature-specific profiler must change the im-
plementation of the feature so that instances mark themselves with feature marks. It
suffices to wrap the relevant code with with-continuation-mark. These marks al-
low the profiler to observe whether a thread is currently executing code related to a
feature.

Figure 3 shows an excerpt from the instrumentation of Typed Racket assertions. The
underlined conditional is responsible for performing the actual assertion. The feature
mark’s key should uniquely identify the construct. In this case, we use the symbol
'TR-assertion as key. Unique choices avoid false reports and interference by distinct
plug-ins. As a consequence, our feature-specific profiler can present a unified report to
users; it also implies that users need not select in advance the constructs they deem
problematic.

The mark value—or payload—can be anything that identifies the instance of the
feature to which the cost should be assigned. In figure 3, the payload is the source
location of a specific assertion in the program, which allows the profiler to compute the
cost of individual assertions.

Writing such plug-ins, while simple and non-intrusive, requires access to the imple-
mentation of the feature of interest. Because it does not require any specialized profiling
knowledge, however, it is well within the reach of the authors of linguistic constructs.

(define-syntax (assert stx)
(syntax-case stx ()

[(assert v p) ; the compiler rewrites this to:
(quasisyntax

(let ([val v] [pred p])
(with-continuation-mark 'TR-assertion (unsyntax (source-location stx))

(if (pred val) val (error "Assertion failed.")))))]))

Figure 3: Instrumentation of assertions (excerpt)

Antimarking Features are seldom “leaves” in a program; feature code usually runs user
code whose execution time may not have to count towards the time spent in the feature.
For example the profiler must not count the time spent in function bodies towards the
function call protocol for keyword arguments.

To solve this problem, a feature-specific profiler expects antimarks on the stack.
Such antimarks are continuation marks with a distinguished value that delimit a fea-
ture’s code. Our protocol dictates that the continuation mark key used by an antimark
is the same as that of the feature it delimits and that they use the 'antimark symbol as
payload. Figure 4 illustrates the idea with code that instruments a simplified version of
Racket’s optional and keyword argument protocol. In contrast, assertions do not require
antimarks because user code evaluation happens outside the marked region.

The analysis phase recognizes antimarks and uses them to cancel out feature marks.
Time is attributed to a feature only if the most recent mark is a feature mark. If it is an
antimark, the program is currently executing user code, which should not be counted.

(define-syntax (lambda/keyword stx)
(syntax-case stx ()

[(lambda/keyword formals body) ; the compiler rewrites this to:
(quasisyntax

(lambda (unsyntax (handle-keywords formals))
(with-continuation-mark 'kw-opt-protocol (unsyntax (source-location stx))

(; parse keyword arguments, compute default values, ...
(with-continuation-mark 'kw-opt-protocol 'antimark

body)))))])) ; body is use-site code

Figure 4: Use of antimarks in instrumentation

Sampling During program execution, our profiler’s sampling thread periodically col-
lects and stores continuation marks from the main thread. The sampling thread has
knowledge of the keys used by feature marks and collects marks for all features at once.

3.3 Analyzing Feature-specific Data

After the program execution terminates, the core profiler analyzes the data collected by
the sampling thread to produce a feature cost report.

Cost assignment The profiler uses a standard sliding window technique to assign a time
cost to each sample based on the elapsed time between the sample, its predecessor and
its successor. Only samples with a feature mark as the most recent mark contribute time
towards features.

Payload grouping As explained in section 3.2, payloads identify individual feature
instances. Our accounting algorithm groups samples by payload and adds up the cost of
each sample; the sums correspond to the cost of each feature instance. Our profiler then
generates reports for each feature, using payloads as keys and time costs as values.

Report composition Finally, after generating individual feature reports, our profiler
combines them into a unified report. Constructs absent from the program or those inex-
pensive enough to never be sampled are pruned to avoid clutter. The report lists features
in descending order of cost, and does likewise for instances within feature reports.

Figure 5 shows a feature profile for a Racket implementation of the FizzBuzz5 program
with an input of 10,000,000. Most of the execution time is spent printing numbers not
divisible by either 3 or 5 (line 16), which includes most numbers. About a second is
spent in generic sequence dispatch; the range function produces a list, but the for
iteration form accepts all sequences and must therefore process its input generically.

5 http://imranontech.com/2007/01/24/

http://imranontech.com/2007/01/24/

10 (define (fizzbuzz n)
11 (for ([i (range n)])
12 (cond
13 [(divisible i 15) (printf "FizzBuzz\n")]
14 [(divisible i 5) (printf "Buzz\n")]
15 [(divisible i 3) (printf "Fizz\n")]
16 [else (printf "∼a\n" i)])))
17
18 (feature-profile
19 (fizzbuzz 10000000))

Output accounts for 68.22% of
running time (5580 / 8180 ms)

4628 ms : fizzbuzz.rkt:16:24
564 ms : fizzbuzz.rkt:15:24
232 ms : fizzbuzz.rkt:14:24
156 ms : fizzbuzz.rkt:13:24

Generic sequences account for 11.78%
of running time (964 / 8180 ms)

964 ms : fizzbuzz.rkt:11:11

Figure 5: Feature profile for FizzBuzz

4 Profiling Rich Features

The basic architecture assumes that the placement of a feature and the location where
it incurs a run-time costs are the same or in one-to-one correspondence. In contrast
to such structurally simple features, some, such as contracts, cause time consumption
in many different places, and in other cases, such as Marketplace processes, several
different instances of a construct contribute to a single cost center. We call the latter
kind of linguistic features structurally rich.

While the creator of a structurally rich feature can use a basic plug-in to measure
some aspects of its cost, it is best to adapt a different strategy for evaluating such fea-
tures. This section shows how to go about such an adaptation. Section 6.2 illustrates
with an example how to migrate from a basic plug-in to one appropriate for a struc-
turally rich feature.

4.1 Custom Payloads

Instrumentation for structure-rich features uses arbitrary values as mark payloads in-
stead of locations.

Contracts Our contract plug-in uses blame objects as payloads. A blame object ex-
plains contract violations and pinpoints the faulty party; every time an object traverses
a higher-order contract boundary, the contract system attaches a blame object. Put dif-
ferently, a blame object holds enough information—the contract to check, the name of
the contracted value, and the names of the components that agreed to the contract—to
reconstruct a complete picture of contract checking events.

Marketplace processes The Marketplace plug-in uses process names as payloads. Since
current-continuation-marks gathers all the marks currently on the stack, the
sampling thread can gather core samples.6 Because Marketplace VMs are spawned and
transfer control using function calls, these core samples include not only the current
process but also all its ancestors—its parent VM, its grandparent, etc.

6 In analogy to geology, a core sample includes marks from the entire stack.

(define (random-matrix)
(build-matrix 200 200
(lambda (i j) (random))))

(feature-profile
(matrix* (random-matrix) (random-matrix)))

Contracts account for 47.35% of running time (286 / 604 ms)
188 ms : build-matrix (-> Int Int (-> any any any) Array)
88 ms : matrix-multiply-data (-> Array Array [...]))
10 ms : make-matrix-multiply (-> Int Int Int (-> any any any) Array)

Figure 6: Module graph and by-value views of a contract boundary

Parser backtracking The Parsack plug-in combines three values into a payload: the
source location of the current disjunction, the index of the active branch within the
disjunction, and the offset in the input where the parser is currently matching. Because
parsing a term may require recursively parsing sub-terms, the Parsack plug-in gathers
core samples that allow it to attribute time to all active non-terminals.

While storing rich payloads is attractive, plug-in writers must avoid excessive computa-
tion or allocation when constructing payloads. Even though the profiler uses sampling,
payloads are constructed every time feature code is executed, whether or not the sampler
observes it.

4.2 Analyzing Rich Features

Programmers usually cannot directly digest information generated via custom payloads.
If a feature-specific plug-in uses such payloads, its creator should implement an analysis
pass that generates user-facing reports.

Contracts The goal of the contract plug-in is to report which pairs of parties impose
contract checking, and how much the checking costs. Hence, the analysis aims to pro-
vide an at-a-glance overview of the cost of each contract and boundary.

To this end, our analysis generates a module graph view of contract boundaries. This
graph shows modules as nodes, contract boundaries as edges and contract costs as labels
on edges. Because typed-untyped boundaries are an important source of contracts, the
module graph distinguishes typed modules (in green) from untyped modules (in red).
To generate this view, our analysis extracts component names from blame objects. It
then groups payloads that share pairs of parties and computes costs as discussed in
section 3.3. The top-right part of figure 6 shows the module graph for a program that
constructs two random matrices and multiplies them. This code resides in an untyped
module, but the matrix functions of the math library reside in a typed module. Hence
linking the client and the library introduces a contract boundary between them.

In addition to the module graph, our feature-specific profiler provides other views
as well. For example, the bottom portion of figure 6 shows the by-value view, which
provides fine-grained information about the cost of individual contracted values.

Marketplace Processes The goal of our feature-specific analysis for Marketplace pro-
cesses is to assign costs to individual processes and VMs, as opposed to the code they
execute. Marketplace feature marks use the names of processes and VMs as payloads,
which allows the plug-in to distinguish separate processes executing the same code.

Our analysis uses full core samples to attribute costs to VMs based on the costs of
their children. These core samples record the entire ancestry of processes in the same
way the call stack records function calls. We exploit that similarity and reuse standard
edge profiling techniques to attribute costs to the entire ancestry of a process.

==
Total Time Self Time Name Local%
==
100.0% 32.3% ground

(tcp-listener 5999 ::1 53588) 33.7%
tcp-driver 9.6%
(tcp-listener 5999 ::1 53587) 2.6%
[...]

33.7% 33.7% (tcp-listener 5999 ::1 53588)
2.6% 2.6% (tcp-listener 5999 ::1 53587)
[...]

Figure 7: Marketplace process accounting (excerpt)

Figure 7 shows the accounting from a Marketplace-based echo server. The first entry
of the profile shows the ground VM, which spawns all other VMs and processes. The
rightmost column shows how execution time is split across the ground VM’s children.
Of note are the processes handling requests from two clients. As reflected in the profile,
the client on port 53588 is sending ten times as much input as the one on port 53587.

Parser backtracking The feature-specific analysis for Parsack determines how much
time is spent backtracking for each branch of each disjunction. The source locations
and input offsets in the payload allows the plug-in to identify each unique visit that the
parser makes to each disjunction during parsing.

We detect backtracking as follows. Because disjunctions are ordered, the parser
must have backtracked from branches 1 through n − 1 once it reaches the nth branch
of a disjunction. Therefore, whenever the analysis observes a sample from branch n of
a disjunction at a given input location, it attributes backtracking costs to the preceding
branches. It computes that cost from the samples taken in these branches at the same
input location. As with the Marketplace plug-in, the Parsack plug-in uses core samples
and edge profiling to handle the recursive structure of the parsing process.

Figure 8 shows a simple parser that first attempts to parse a sequence of bs followed
by an a, and in case of failure, backtracks in order to parse a sequence of bs. The right
portion of figure 8 shows the output of the feature-specific profiler when running the
parser on a sequence of 9,000,000 bs. It confirms that the parser had to backtrack from
the first branch after spending almost half of the program’s execution attempting it.
Swapping the $a and $b branches in the disjunction eliminates this backtracking.

26 (define $a (compose $b (char #\a)))
27 (define $b (<or> (compose (char #\b) $b)
28 (nothing)))
29 (define $s (<or> (try $a) $b))
30
31 (feature-profile (parse $s input))

Parsack Backtracking
====================================
Time (ms / %) Disjunction Branch
====================================
2076 46% ab.rkt:29:12 1

Figure 8: An example Parsack-based parser and its backtracking profile

5 Instrumentation Control

As described, plug-ins insert continuation marks regardless of whether a programmer
wishes to profile or not. We refer to this as active marking. For features where individ-
ual instances perform a significant amount of work, such as contracts, the overhead of
active marks is usually not observable. For other features, such as fine-grained console
output where the aggregate cost of individually inexpensive instances is significant, the
overhead of marks can be problematic. In such situations, programmers want to control
when marks are applied on a by-execution basis.

In addition, programmers may also want to control where mark insertion takes place
to avoid reporting costs in code that they cannot modify or wish to ignore. For instance,
reporting that some function in the standard library performs a lot of pattern matching
is useless to most programmers; they cannot fix it.

To establish control over the when and where of continuation marks, our framework
introduces the notion of latent marks. A latent mark is an annotation that, on demand,
can be turned into an active mark by a preprocessor or a compiler pass. We distin-
guish between syntactic latent marks for use with features implemented using meta-
programming and functional latent marks for use with library or runtime functions.

5.1 Syntactic Latent Marks

Syntactic latent marks exist as annotations on the intermediate representation (IR) of
user code. To add a latent mark, the implementation of a feature leaves tags7 on the
residual program’s IR instead of directly inserting feature marks. These tags are dis-
carded after compilation and thus have no run-time effect on the program. Other meta-
programs or the compiler can observe latent marks and turn them into active marks.

Our implementation uses Racket’s compilation handler mechanism to interpose the
activation pass between macro-expansion and the compiler’s front end with a command-
line flag that enables the compilation handler. The compilation handler then traverses
the input program, replacing any syntactic latent mark it finds with an active mark.
Because latent marks are implicitly present in user code, no library recompilation is
necessary. The programmer must merely recompile the code to be profiled.

This method applies only to features implemented using meta-programming. Be-
cause Racket relies heavily on syntactic extension, most of our plug-ins use syntactic
latent marks.

7 We use Racket’s syntax property mechanism, but any IR tagging mechanism would apply.

5.2 Functional Latent Marks

Functional latent marks offer an alternative to syntactic latent marks. Instead of tagging
the programmer’s code, a preprocessor or compiler pass recognizes calls to feature-
related functions and rewrites the programmer’s code to wrap such calls with active
marks. Like syntactic latent marks, functional latent marks require recompilation of
user code that uses the relevant functions. They do not, however, require recompiling
libraries that provide feature-related functions, which makes them appropriate for func-
tions provided as runtime primitives.

6 Evaluation

Our evaluation addresses two promises concerning feature-specific profiling: that mea-
suring in a feature-specific way supplies useful insights into performance problems,
and that it is easy to implement new plug-ins. This section first presents case studies
that demonstrate how feature-specific profiling improves the performance of programs.
Then it reports on the amount of effort required to implement plug-ins. The online ver-
sion of this paper8 includes an appendix that discusses run-time overhead.

6.1 Case Studies

To be useful, a feature-specific profiler must accurately identify specific uses of features
that are responsible for significant performance costs in a given program. Furthermore,
an ideal profiler must provide actionable information, that is, its reports must point
programmers towards solutions. Ideally, it will also provide negative information, i.e.,
confirm that some constructs need not be investigated.

We present three case studies suffering from the overhead of specific features. Each
subsection describes a program, summarizes the feature-specific profiler’s feedback,
and explains the changes that directly follow from the report. Figure 9 presents the re-
sults of comparing execution times before and after the changes. It also includes results
from two additional programs—a sound synthesis engine and a Shill-based automatic
grading script—which we do not discuss due to a lack of space.

Maze Generator Our first case study employs a Typed Racket version of a maze gen-
erator, due to Olin Shivers. For scale, the maze generator is 758 lines of code. The
program generates a maze on a hexagonal grid, ensures that it is solvable, and prints it.

According to the feature profile, 55% of the execution time is spent performing
output. Three calls to display, each responsible for printing part of the bottom of
hexagons, stand out as especially expensive. Printing each part separately results in a
large number of single-character output operations. This report suggests fusing all three
output operations into one. Following this advice results in a 1.39× speedup.

Inside an inner loop, a dynamic type assertion enforces an invariant that the type
system cannot guarantee statically. Even though this might raise concerns with a cost-
conscious programmer, the profile reports that the time spent in the cast is negligible.

8 http://www.ccs.neu.edu/racket/pubs/#cc15-saf

http://www.ccs.neu.edu/racket/pubs/#cc15-saf

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

No
rm

al
iz

ed
 ti

m
e

mazemazemazemazemazemazemazemazemaze sshsshsshsshsshsshsshsshssh mdmdmdmdmdmdmdmdmd synthsynthsynthsynthsynthsynthsynthsynthsynth gradegradegradegradegradegradegradegradegrade
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

Before

After

Program Problem feature(s) Negative Infomation

maze Output Casts

ssh Processes, Pattern matching,
contracts generic sequences

markdown Backtracking Pattern matching

synth Contracts Generic sequences,
output

grade Security policies -

Results are the mean of 30 executions on a 6-core 64-bit Debian GNU/Linux system with 12GB of RAM.
Because Shill only supports FreeBSD, results for grade are from a 6-core FreeBSD system with 6GB of RAM.
Error bars are one standard deviation on either side.

Figure 9: Execution time after profiling and improvements (lower is better)

Marketplace-Based SSH Server Our second case study involves an SSH server9 writ-
ten using the Marketplace library. For scale, the SSH server is 3,762 lines of code. To
exercise it, a driver script starts the server, connects to it, launches a Racket read-eval-
print-loop on the host, evaluates the expression (+ 1 2 3 4 5 6), disconnects and
terminates the server.

As figure 10 shows, our feature-specific profiler brings out two useful facts. First,
two spy processes—the tcp-spy process and the boot process of the ssh-session
VM—account for over 25% of the total execution time. In Marketplace, spies are pro-
cesses that observe other processes for logging purposes. The SSH server spawns these
spy processes even when logging is ignored, resulting in unnecessary overhead.

Second, contracts account for close to 67% of the running time. The module view,
of which figure 11 shows an excerpt, reports that the majority of these contracts lie at
the boundary between the typed Marketplace library and the untyped SSH server. We
can selectively remove these contracts in one of two ways: by adding types to the SSH
server or by disabling typechecking in Marketplace.

Disabling spy processes and type-induced contracts results in a speedup of around
4.41×. In addition to these two areas of improvement, the feature profile also provides
negative information: pattern matching and generic sequences, despite being used per-
vasively, account for only a small fraction of the server’s running time.

9 https://github.com/tonyg/marketplace-ssh

https://github.com/tonyg/marketplace-ssh

Marketplace Processes
==
Total Time Self Time Name Local%
==
100.0% 3.8% ground

ssh-session-vm 51.2%
tcp-spy 19.9%
(tcp-listener 2322 ::1 44523) 19.4%
[...]

51.2% 1.0% ssh-session-vm
ssh-session 31.0%
(#:boot-process ssh-session-vm) 14.1%
[...]

19.9% 19.9% tcp-spy
7.2% 7.2% (#:boot-process ssh-session-vm)
[...]

Contracts account for 66.93% of running time (3874 / 5788 ms)
1496 ms : add-endpoint (-> pre-eid? role? [...] add-endpoint?)
1122 ms : process-spec (-> (-> any [...]) any)
[...]

Pattern matching accounts for 0.76% of running time (44 / 5788 ms)
[...]

Generic sequences account for 0.35% of running time (20 / 5788 ms)
[...]

Figure 10: Profiling results for the SSH server (excerpt)

Figure 11: Module graph view for the SSH server (excerpt)

Markdown Parser Our last case study involves a Parsack-based Markdown parser,10

due to Greg Hendershott. For scale, the Markdown parser is 4,058 lines of Racket code.
To profile the parser, we ran it on 1,000 lines of sample text.11

As figure 12 shows, backtracking from three branches took noticeable time and ac-
counted for 34%, 2%, and 2% of total execution time, respectively. Based on the tool’s
report, we moved the problematic branches further down in their enclosing disjunction,
which produced a speedup of 1.40×.

For comparison, Parsack’s author, Stephen Chang, manually optimized the same
version of the Markdown parser using ad-hoc, low-level instrumentation and achieved a
speedup of 1.37×. Using our tool, the second author, with no knowledge of the parser’s
internals, was able to achieve a similar speedup in only a few minutes of work.

The feature-specific profiler additionally confirmed that pattern matching accounted
for a negligible amount of the total running time.

Parsack Backtracking
===
Time (ms / %) Disjunction Branch
===
5809.5 34% markdown/parse.rkt:968:7 8
366.5 2% parsack/parsack.rkt:449:27 1
313.5 2% markdown/parse.rkt:670:7 2
[...]

Pattern matching accounts for 0.04% of running time (6 / 17037 ms)
6 ms : parsack/parsack.rkt:233:4

Figure 12: Profiling results for the Markdown parser (excerpt)

6.2 Plug-in Implementation Effort

Writing feature-specific plug-ins is a low-effort endeavor. It is easily within reach for the
authors of linguistic libraries because it does not require advanced profiling knowledge.
To support this claim, we start with anecdotal evidence from observing the author of
the Marketplace library implement feature-specific profiling support for it.

Mr. Garnock-Jones, an experienced Racket programmer, implemented the plug-in
himself, with the first author acting as interactive documentation of the framework. Im-
plementing the first version of the plug-in took about 35 minutes. At that point, Mr.
Garnock-Jones had a working process profiler that performed the basic analysis de-
scribed in section 3.3. Adding a feature-specific analysis took an additional 40 minutes.
Less experienced library authors may require more time for a similar task. Nonetheless,
we consider this amount of effort to be quite reasonable.

For the remaining features, we report the number of lines of code for each plug-in
in figure 13. The third column reports the number of lines of domain-specific analy-
sis code. The basic analysis is provided as part of the framework. The line counts for
10 https://github.com/greghendershott/markdown
11 An excerpt from "The Time Machine" by H.G. Wells.

https://github.com/greghendershott/markdown

Marketplace and Parsack do not include the portions of Racket’s edge profiler that are
re-linked into the plug-ins, which account for 506 lines. With the exception of con-
tract instrumentation—which covers multiple kinds of contracts and is spread across
the 16,421 lines of the contract system—instrumentation is local and non-intrusive.

Feature Instrumentation LOC Analysis LOC

Output 11 -
Generic sequences 18 -
Type casts and assertions 37 -
Shill security policies 23 -
Pattern matching 18 -
Optional and keyword arguments 50 -
Method dispatch 12 -
Contracts 183 672
Marketplace processes 7 9
Parser non-terminals 18 60

Figure 13: Instrumentation and analysis LOC per feature

7 Limitations

Our specific approach to feature-specific profiling applies only to certain kinds of lin-
guistic constructs. This section describes cases that our feature-specific profiler should
but cannot support. Those limitations are not fundamental to the idea of feature-specific
profiling and could be addressed by different approaches to data gathering.

Control features Because our instrumentation strategy relies on continuation marks,
it does not support features that interfere with marks. This rules out non-local control
features that unroll the stack, such as exception raising.

Non-observable features The sampler must be able to observe a feature in order to
profile it. This rules out uninterruptible features, e.g., struct allocation, or FFI calls,
which do not allow the sampling thread to be scheduled during their execution. Other
obstacles to observability include sampling bias (Mytkowicz et al. 2010) and instances
that execute too quickly to be reliably sampled.

Diffuse features Some features, such as garbage collection, have costs that are dif-
fused throughout the program. This renders mark-based instrumentation impractical.
An event-based approach, such as Morandat et al.’s (2012), would fare better. The use
of events would also make feature-specific profiling possible in languages that do not
support stack inspection.

8 Related Work

Programmers already have access to a wide variety of performance tools that are com-
plementary to feature-specific profilers. This section compares our work to those ap-
proaches that are closely related.

8.1 Traditional Profiling

Profilers have been successfully used to diagnose performance issues for decades. They
most commonly report on the consumption of time, space and I/O resources. Tradi-
tional profilers group costs according to program organization, be it static—e.g., per
function—or dynamic—e.g., per HTTP request. Feature-specific profilers group costs
according to linguistic features and specific feature instances.

Each of these views is useful in different contexts. For example, a feature-specific
profiler’s view is most useful when non-local feature costs make up a significant portion
of a program’s running time. Traditional profilers may not provide actionable informa-
tion in such cases. Furthermore, by identifying costly features, feature-specific profilers
point programmers towards potential solutions, namely correcting feature usage. In con-
trast, traditional profilers often report costs without helping find solutions. Conversely,
traditional profilers may detect a broader range of issues than feature-specific profilers,
such as inefficient algorithms, which are invisible to feature-specific profilers.

8.2 Vertical Profiling

A vertical profiler (Hauswirth et al. 2004) attempts to see through the use of high-level
language features. It therefore gathers information from multiple layers—hardware per-
formance counters, operating system, virtual machine, libraries—and correlates them
into a gestalt of program performance.

Vertical profiling focuses on helping programmers understand how the interaction
between layers affects their program’s performance. By comparison, feature-specific
profiling focuses on helping them understand the cost of features per se. Feature-specific
profiling also presents information in terms of features and feature instances, which is
accessible to non-expert programmers, whereas vertical profilers report low-level infor-
mation, which requires a deep understanding of the compiler and runtime system.

Hauswirth et al.’s work introduces the notion of software performance monitors,
which are analogous to hardware performance monitors but record software-related per-
formance events. These monitors could possibly be used to implement feature-specific
profiling by tracking the execution of feature code.

8.3 Alternative Profiling Views

A number of profilers offer alternative views to the traditional attribution of time costs
to program locations. Most of these views focus on particular aspects of program perfor-
mance and are complementary to the view offered by a feature-specific profiler. Some
recent examples include Singer and Kirkham’s (2008) profiler, which assigns costs to

programmer-annotated code regions, listener latency profiling (Jovic and Hauswirth
2011), which reports high-latency operations, and Tamayo et al.’s (2012) tool, which
provides information about the cost of database operations.

8.4 Dynamic Instrumentation Frameworks

Dynamic instrumentation frameworks such as Valgrind (Nethercote and Seward 2007)
or Javana (Maebe et al. 2006) serve as the basis for profilers and other kinds of perfor-
mance tools. These frameworks resemble the use of continuation marks in our frame-
work and could potentially be used to build feature-specific profilers. These frameworks
are much more heavy-weight than continuation marks and, in turn, allow more thorough
instrumentation, e.g., of the memory hierarchy, of hardware performance counters, etc.,
though they have not been used to measure the cost of linguistic features.

8.5 Optimization Coaching

Like a feature-specific profiler, an optimization coach (St-Amour et al. 2012) aims to
help non-experts improve the performance of their programs. Where coaches focus on
enabling compiler optimizations, feature-specific profilers focus on avoiding feature
misuses. The two are complementary.

Optimization coaches operate at compile time whereas feature-specific profilers,
like other profilers, operate at run time. Because of this, feature-specific profilers require
representative program input to operate, whereas coaches do not. On the other hand, by
having access to run time data, feature-specific profilers can target actual program hot
spots, while coaches must rely on static heuristics to prioritize reports.

9 Conclusion

This paper introduces feature-specific profiling, a technique that reports program costs
in terms of linguistic features. It also presents an architecture for feature-specific pro-
filers that allows the authors of libraries to implement plug-ins in their libraries.

The alternative view on program performance offered by feature-specific profilers
allows easy diagnosis of performance issues due to feature misuses, especially those
with distributed costs, which might go undetected using a traditional profiler. By point-
ing to the specific features responsible, feature-specific profilers provide programmers
with actionable information that points them towards solutions.

Acknowledgements Tony Garnock-Jones implemented the Marketplace plug-in and
helped us perform the SSH case study. Stephen Chang assisted with the Parsack plug-
in and the Markdown case study. Christos Dimoulas and Scott Moore collaborated on
the Shill plug-in and the grading script experiment. Robby Findler provided assistance
with the contract system. We thank Eli Barzilay, Matthew Flatt, Asumu Takikawa, Sam
Tobin-Hochstadt and Jan Vitek for helpful discussions.

This work was partially supported by Darpa, NSF SHF grants 1421412, 1421652,
and Mozilla.

Bibliography

John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an algebraic stepper. In Proc.
ESOP, pp. 320–334, 2001.

John Clements, Ayswarya Sundaram, and David Herman. Implementing continuation marks in
JavaScript. In Proc. Scheme Works., pp. 1–10, 2008.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi,
Paul Steckler, and Matthias Felleisen. DrScheme: a programming environment for Scheme.
JFP 12(2), pp. 159–182, 2002.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In Proc.
ICFP, pp. 48–59, 2002.

Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-1, 2010. http://
racket-lang.org/tr1/

Tony Garnock-Jones, Sam Tobin-Hochstadt, and Matthias Felleisen. The network as a language
construct. In Proc. ESOP, pp. 473–492, 2014.

Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind. Vertical profiling. In
Proc. OOPSLA, pp. 251–269, 2004.

Milan Jovic and Matthias Hauswirth. Listener latency profiling. SCP 19(4), pp. 1054–1072, 2011.
Jonas Maebe, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere. Javana: a system for

building customized Java program analysis tools. In Proc. OOPSLA, pp. 153–168, 2006.
Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. A lightweight interactive debugger for

Haskell. In Proc. Haskell Works., pp. 13–24, 2007.
Jay McCarthy. The two-state solution: native and serializable continuations accord. In Proc.

OOPSLA, pp. 567–582, 2010.
Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. SHILL: a secure shell scripting

language. In Proc. OSDI, 2014.
Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. Evaluating the Design of the R

Language. In Proc. ECOOP, pp. 104–131, 2012.
Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Evaluating the accu-

racy of Java profilers. In Proc. PLDI, pp. 187–197, 2010.
Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic binary

instrumentation. In Proc. PLDI, pp. 89–100, 2007.
Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and Matthias Felleisen.

Continuations from generalized stack inspection. In Proc. ICFP, pp. 216–227, 2005.
Jeremy Singer and Chris Kirkham. Dynamic analysis of Java program concepts for visualization

and profiling. SCP 70(2-3), pp. 111–126, 2008.
Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. Optimization coaching: opti-

mizers learn to communicate with programmers. In Proc. OOPSLA, pp. 163–178, 2012.
T. Stephen Strickland and Matthias Felleisen. Contracts for first-class classes. In Proc. DLS, pp.

97–112, 2010.
T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. Chaper-

ones and impersonators. In Proc. OOPSLA, pp. 943–962, 2012.
Juan M. Tamayo, Alex Aiken, Nathan Bronson, and Mooly Sagiv. Understanding the behavior of

database operations under program control. In Proc. OOPSLA, pp. 983–996, 2012.
Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage refactoring: from scripts to pro-

grams. In Proc. DLS, pp. 964–974, 2006.

http://racket-lang.org/tr1/
http://racket-lang.org/tr1/

A. Instrumentation Overhead

Our feature-specific profiler imposes an acceptably low overhead on program execution.
For a summary, see figure 14, which reports preliminary overhead measurements. These
results are the mean of 30 executions on a 64-bit Debian GNU/Linux system12 and
include error bars one standard deviation above and below the mean.

We use the programs listed in figure 15 as benchmarks. They include three of the
case studies from section 6.1, two programs that make heavy use of contracts (lazy and
ode), and six programs from the Computer Language Benchmarks Game13 that use the
features supported by our prototype.

The first column of figure 14 corresponds to programs executing without any feature
marks and serves as our baseline. The second column reports results for programs that
include only marks that are active by default: contract marks and Marketplace marks.
This bar represents the default mode for executing programs without profiling. The
third column also includes all activated latent marks. The fourth column includes all
of the above as well as the overhead from the sampling thread; it is closest to the user
experience when profiling.

With all marks activated, the overhead is lower than 6% for all but two programs,
synth and maze, where it accounts for 16% and 8.5% respectively. The overhead for
marks that are active by default is only noticeable for two of the four programs that
include such marks, synth and ode, and account for 16% and 4.5% respectively. Total
overhead, including sampling, ranges from 3% to 33%.

Based on this experiment, we conclude that the overhead from instrumentation is
quite reasonable in general. The one exception, the synth benchmark, involves a large
quantity of contract checking for cheap contracts, which is the worst case scenario for
contract instrumentation. Further engineering effort could lower this overhead. The
overhead from sampling is similar to that of state-of-the-art sampling profilers as re-
ported by Mytkowicz et al. (2010).

We identify one threat to validity. Because instrumentation is localized to feature
code, its overhead is also localized. This may cause feature execution time to be over-
estimated. Because these overheads are low in general, we conjecture this problem to
be insignificant in practice. In contrast, sampling overhead is uniformily14 distributed
across a program’s execution and should not introduce such biases.

12 The same system used for the measurements of section 6.
13 http://benchmarksgame.alioth.debian.org
14 Assuming random sampling, which we did not verify.

http://benchmarksgame.alioth.debian.org

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)

synthsynthsynthsynth
synthsynthsynthsynthsynth maze

maze
mazemaze
mazemaze
maze
mazemaze sshsshsshsshsshsshsshsshssh lazylazylazylazylazylazylazylazylazy odeodeodeodeodeodeodeodeode

chameneos
chameneos
chameneos
chameneos
chameneos
chameneos
chameneos
chameneos
chameneos

meteor
meteor
meteormeteor
meteormeteor
meteor
meteor
meteor

nbody
nbody
nbodynbody
nbodynbody
nbody
nbodynbody

k-nucleotide

k-nucleotide

k-nucleotide
k-nucleotide

k-nucleotide
k-nucleotide

k-nucleotide

k-nucleotide
k-nucleotide

regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch

reversefile
reversefile
reversefile
reversefile
reversefile
reversefile
reversefile
reversefile
reversefile

000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

1.21.21.21.21.21.21.21.21.2

No marks Active marks only

All marks All marks + sampling

Figure 14: Instrumentation and sampling overhead

Benchmark Description Features

synth Sound synthesizer contracts, output, generic sequences, keyword protocol
maze Maze generator output, assertions
ssh SSH server contracts, output, generic sequences, assertions, marketplace processes,

pattern matching, keyword protocol
lazy Computer vision algorithm contracts
ode Differential equation solver contracts
chameneos Concurrency game pattern matching
meteor Meteor puzzle pattern matching
nbody N-body problem assertions
k-nucleotide K-nucleotide frequencies generic sequences
regexmatch Matching phone numbers assertions, pattern matching
reversefile Reverse lines of a file output

Figure 15: Benchmark descriptions

	Feature-Specific Profiling

