
My teaching approach

Simone Campanoni
simonec@eecs.northwestern.edu

Solutions that enable my teaching philosophy

• are probably known by experienced teachers

• might not be directly transferrable to other classes

• work well (for me at least) for classes with 30-50 students

• worked because students are truly impressive

• are a great fit for my personality

But first, a gentle compiler introduction
while (somethingToDo){

if (somethingToCode){
code(myState);

} else {
read(papers);

}
}

00101010111001010101001010101011010

Compilers

The compiler classes at Northwestern

A rough start

• End of my post-doc: July 2015
• Fall 2015: beginning of my first class designed from scratch

• Prior experience: ok, but not great
• My goal: show students why compilers are fascinating
• Challenge: compilers isn’t a hot topic like Machine Learning

• Solution: transfer my passion

It’s all about passion
• My first passion (before compilers) is about learning
• It is because of the freedom you gain by the new knowledge
• If you know more, you can do more

• My 1st teaching goal:
make students feel this freedom (hopefully) like I do
• Students need
• to learn new concepts
• to use new concepts to solve new problems

New concept

bla bla bla
bla, and
don’t forget
bla bla

My teaching goals
• My first passion (before compilers) is about learning
• It is because of the freedom you gain by the new knowledge
• If you know more, you can do more

• My 1st teaching goal:
make students feel this freedom (hopefully) like I do
• Students need
• to learn new concepts
• to use new concepts to solve new problems

• My 2nd teaching goal: show why compilers are fascinating
• Optimization
• Abstraction
• Scale

New conceptproblemSolution

Elegant, low-cost optimizations

And now
solve this

My teaching goals
• My first passion (before compilers) is about learning
• It is because of the freedom you gain by the new knowledge
• If you know more, you can do more

• My 1st teaching goal:
make students feel this freedom (hopefully) like I do
• Students need
• to learn new concepts
• to use new concepts to solve new problems

• My 2nd teaching goal: show why compilers are fascinating
• Optimization
• Abstraction
• Scale

• My 3rd teaching goal: a bad software/solution is expensive

Solution H0

Elegant, low-cost optimizations

Solution H1

Solution H2

Solution H3

Solution H9

.

.

.

Week

Topic 0

Topic 1

Topic 2

Topic 3

.

.

.

Topic 9

My teaching goals
• My first passion (before compilers) is about learning
• It is because of the freedom you gain by the new knowledge
• If you know more, you can do more

• My 1st teaching goal:
make students feel this freedom (hopefully) like I do
• Students need
• to learn new concepts
• to use new concepts to solve new problems

• My 2nd teaching goal: show why compilers are fascinating
• Optimization
• Abstraction
• Scale

• My 3rd teaching goal: a bad software/solution is expensive

Elegant, low-cost optimizations My
teaching goals

My
teaching
wish list

Challenges
• My classes: one topic per week

• Every week, students have to
1. Learn new concepts and related abstractions
2. Understand new problems
3. Decide which existing abstractions to reuse

and whether new ones are needed
4. Create new abstractions or tune existing ones
5. Create a solution that actually works in real systems
6. Learn how to test their solutions

• Very challenging and it requires
a significant commitment of time and mental effort
• Despite my efforts to simplify my classes, they are still challenging
• I was scared (and still am) nobody would take my classes

•Challenge 1: knowing how to improve

•Challenge 2: learning new concepts quickly

•Challenge 3: motivating students
to keep pushing theirself

Challenge 1: knowing how to improve

I ask feedbacks/criticisms during the last day of my classes
• Todos.txt keeps growing during that day
• Goal: everything in todos.txt will be done before the subsequent year

Challenge 2: learning new concepts quickly

Typical teaching flow:
1. Description of new concept
2. Description of possible implementations of this new concept
3. Description of how this concept

is implemented in systems used in production
4. Description of when/how this concept implementation is used in practice
The enabling part is at the end

Too late:
• Exciting part is at the end
• Motivation of learning a new concept is at the end
• Students have lost some attention going through the first part

My teaching flow
1. Demo: you want X (e.g., face detection in real time), you don't get it
2. Dig deep on why we didn't get it
3. Problem: this is the issue, we need to solve it to get X
4. Solution: we need information Y and Z to solve the issue
5. Description of a new concept that captures Y and Z
6. Use it to solve the original problem
7. Possible implementations of this new concept
8. How this concept is actually implemented in systems used in production
9. Other practical uses of this new concept

Challenge 2: learning new concepts quickly

More steps, but each one is significantly quicker
(you don’t need to keep repeating yourself, the flow feels more natural)
Students stay more engaged

Challenge 3: motivate students
to keep pushing theirself

• I gamified my classes as much as possible
• One assignment per week: range of points available
• Extra assignments for more points
• Advance uses of topics learn in class

• End goal: competition during the last day of the class
• Live
• Cars/students will compete (ncurses-based framework)
• They will compete against me as well
• Something I didn’t expect: they really want to beat my solution

Hall of fame

Hall of fame

• My first passion (before compilers) is about learning
• It is because of the freedom you gain by the new knowledge

• If you know more, you can do more
• My 1st teaching goal:

make students feel this freedom (hopefully) like I do
• Students need
• to learn new concepts
• to use new concepts to solve new problems

• My 2nd teaching goal: show why compilers are fascinating
• Optimization
• Abstraction
• Scale

• My 3rd teaching goal: a bad software/solution is expensive

Elegant, low-cost optimizations My
teaching goals

My
teaching
wish list

