
Graph coloring
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Graph coloring

• Heuristics

• L2c

2

Graph coloring task

• Input : the interference graph
• Output: the interference graph where each node has a color (or fail)

• Task: Color the nodes in the graph
 such that connected nodes have different colors

• Abstraction: colors are registers

• After performing the graph coloring task:
Replace L2 variables with the registers specified by the colors 3

Register allocator

A graph-coloring register allocator structure

Graph
coloring

f

Spill

f without variables and
with registers

spill(f, var, prefix)

f with
var spilledCode

analysis

Assign colors

Code generation

Interference graph, f

Interference graph
colored, f

4

Colors
• At design time of the register allocator:

Map general purpose (GP) registers to colors

• The L1 (15) GP registers:
rdi, rsi, rdx, rcx, r8, r9, rax, r10, r11, r12, r13, r14, r15, rbp, rbx

• Each register has one node in the interference graph
• Pre-colored nodes

• Before starting coloring the nodes related to variables:
Color register nodes with their own colors

5

A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling happens in this case
• Select the nodes you want to spill

HEURISTICS

v0

v2
v1

6

v0

v2
r10

v1

rdi

rax

rsi

(@myF 3
 %v0 <- rdi
 %v0 += rdi
 %v0 += rsi
 %v0 += r10
 %v1 <- %v0
 %v2 <- %v0
 rax <- %v0
 rax += %v1
 rax += %v2
 return
)

rdi

r10
rax

rsi

@myf(%p0, %p1, %p2){
 return (%p0 *2 + %p1 + %p2) * 3
}

We just need 1 register

7

v0

r10

v1

rdi

rax

rsi

(@myF 3
 %v0 <- rdi
 %v0 += rdi
 %v0 += rsi
 %v0 += r10
 %v1 <- %v0
 %v2 <- %v0
 rax <- %v0
 rax += %v1
 rax += %v2
 return
)

rdi

r10
rax

v2rsi

@myf(%p0, %p1, %p2){
 return (%p0 *2 + %p1 + %p2) * 3
}

We just need 1 register

8

v0

r10

rdi

rax

rsi

(@myF 3
 %v0 <- rdi
 %v0 += rdi
 %v0 += rsi
 %v0 += r10
 %v1 <- %v0
 %v2 <- %v0
 rax <- %v0
 rax += %v1
 rax += %v2
 return
)

rdi

r10
rax

v1
v2rsi

@myf(%p0, %p1, %p2){
 return (%p0 *2 + %p1 + %p2) * 3
}

We just need 1 register

9

r10

rdi

rax

rsi

(@myF 3
 %v0 <- rdi
 %v0 += rdi
 %v0 += rsi
 %v0 += r10
 %v1 <- %v0
 %v2 <- %v0
 rax <- %v0
 rax += %v1
 rax += %v2
 return
)

rdi

r10
rax v0

v1
v2rsi

@myf(%p0, %p1, %p2){
 return (%p0 *2 + %p1 + %p2) * 3
}

We just need 1 register

10

v0

r10

rdi

rax

rsi

(@myF 3
 %v0 <- rdi
 %v0 += rdi
 %v0 += rsi
 %v0 += r10
 %v1 <- %v0
 %v2 <- %v0
 rax <- %v0
 rax += %v1
 rax += %v2
 return
)

rdi

r10
rax

v1
v2rsi

@myf(%p0, %p1, %p2){
 return (%p0 *2 + %p1 + %p2) * 3
}

We just need 1 register

11

v0

r10

v1

rdi

rax

rsi

(@myF 3
 %v0 <- rdi
 %v0 += rdi
 %v0 += rsi
 %v0 += r10
 %v1 <- %v0
 %v2 <- %v0
 rax <- %v0
 rax += %v1
 rax += %v2
 return
)

rdi

r10
rax

v2rsi

@myf(%p0, %p1, %p2){
 return (%p0 *2 + %p1 + %p2) * 3
}

We just need 1 register

12

v0

r10

v1

rdi

rax

rsi

(@myF 3
 %v0 <- rdi
 %v0 += rdi
 %v0 += rsi
 %v0 += r10
 %v1 <- %v0
 %v2 <- %v0
 rax <- %v0
 rax += %v1
 rax += %v2
 return
)

rdi

r10
rax

rsi

@myf(%p0, %p1, %p2){
 return (%p0 *2 + %p1 + %p2) * 3
}

v2

We just need 1 register

No spilling necessary J
We need 3 registers L 13

Outline

• Graph coloring

• Heuristics

• L2c

14

Heuristics

• You need to decide the heuristics to use

• Next slides describe simple heuristics you can implement
 (but you don’t have to. You can implement your own heuristics
 as long as you implement the coloring algorithm)

• We will see more advanced heuristics later
• You don’t have to implement them to complete your homework
• But if you do:

your L2 compiler will generate more performant code
• At the end of this class: all final compilers will compete

15

A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling comes in here
• Select the nodes you want to spill

16

Heuristic: select the nodes to remove

Observation:
• Suppose G contains a node m with < K adjacent nodes
• Let G’ be the graph G without m
• If G’ can be colored with K colors, then so can G

Heuristic:
• Remove all nodes with #edges < #colors (15 in L1),

starting with the one with most edges and
recalculating #edges after each removal
• After all nodes with < 15 edges are removed,

remove the remaining ones starting from the one
with the highest number of edges

You can create your own heuristic

17

v0

v2
r12

v1

rdi

rax

v1
v2

rsi

Let us assume we have only 4 registers. Hence, the heuristics is
• Remove all nodes with #edges < 4,

starting with the one with most edges and
recalculating #edges after each removal

• After all nodes with < 4 edges are removed,
remove the remaining ones starting from the one
with the highest number of edges

Node Degree

v0 6

v1 3

v2 3
18

v0

r12

rdi

rax

v0
v1
v2

rsi

Let us assume we have only 4 registers. Hence, the heuristics is
• Remove all nodes with #edges < 4,

starting with the one with most edges and
recalculating #edges after each removal

• After all nodes with < 4 edges are removed,
remove the remaining ones starting from the one
with the highest number of edges

Node Degree

v0 4

19

A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling comes in here
• Select the nodes you want to spill

20

Heuristic: select the color to use

Heuristic:
• Sort the colors at design time starting from caller save registers
• Use the lowest free color

21

v0

r12

rdi

rax

v0
v1
v2

rsi

Caller save Callee save

rdi r12

rsi

rax

Order: rdi rsi rax r12

Caller save Callee save

No color is available!

v1

v2

22

A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling comes in here
• Select the nodes you want to spill

23

Heuristic: select the variables to spill
Constraint:
Never spill a variable created by a previous spill (to avoid infinite spilling)
Observation:
Every time you spill:
• Liveness analysis
• Interference graph
• Graph coloring

Heuristic:
• Add all nodes to the graph at step 2 of the algorithm
• Mark all nodes that represent variables that have no color
• Spill all variables represented by these marked nodes

You can create your own heuristic (e.g., spill only one variable at a time)

24

v0

r12

rdi

rax

v0
v1
v2

rsi

Caller save Callee save

rdi r12

rsi

rax

Order: rdi rsi rax r12

Caller save Callee save

v1

v2

Spill v0

25

Register allocator

Graph
coloring

f

Spill

f without variables and
with registers

spill(f, var, prefix)

f with
var spilledCode

analysis

26

Register allocator

Graph
coloring

f

Spill

f without variables and
with registers

spillAllVars(f_orig,
 prefix)

Code
analysis

It can happen (it’s rare)
that the graph coloring:
• Cannot color all variables
• Cannot spill any variable

27

Outline

• Graph coloring

• Heuristics

• L2c

28

Register allocator

f

f without variables and
with registers

prog.L1

a.out

L2 program

Your
work

L1c

L2c

29

L2c

• Generating assembly from an L2 program
cd L2 ; ./L2c tests/test25.L2

• L2c steps (this is useful to know to debug your work):
1) Generate an L1 program from an L2 one

L2/bin/L2 is invoked to generate L2/prog.L1
(the name of the output file of your L2 compiler has to always be prog.L1)

2) Generate assembly code from the generated L1 program
L1/bin/L1 compiler is invoked to translate L2/prog.L1
The output is L1/prog.S

3) The GNU assembler and linker are invoked to generate the binary
The standalone binary generated is L2/a.out

30

Homework #2: the L2 compiler

Register allocator

L2 function f

L2 function f with registers only

(stack-arg) translator

L2 function f with registers only and
without (stack-arg)

L1 function

For every L2 function f

31

The new L2 instruction

• It accesses stack-based arguments
 w <- stack-arg M
• It is equivalent to

w <- mem rsp ?
where ? is M plus the number of
bytes of the stack space used for
local variables
• stack-arg 0 is always

the last stack argument
• stack-arg 8 is always

the second to last argument rsp

Ret addr

Local

Arg 8

Arg 7

(@myF
 8 1
 r10 <- stack-arg 0
 r10 += 2
 rdi <- r10
 call print 1
 return
)

32

Compiling your L2 compiler

• Build your L1 compiler:
• Keep your L1 compiler sources in L1/src
• Compile your L1 compiler:

cd L1 ; make -j

• Build your L2 compiler:
• Build your homework #2 under L2/src
• Write new code to complete the translation from L2 to L1 in L2/src
• Compile your L2 compiler:

cd L2 ; make -j
33

Testing your full L2 compiler for homework #2

• Under L2/tests there are the L2 programs to translate

• To test:
• To check all tests: cd L2; make test
• To check one test: ./L2c tests/test25.L2

• The output of a binary your compiler generates are in L2/tests
• For example,

the output of L2/tests/test25.L2f
is L2/tests/test25.L2.out

34

Tips about debugging your L2 compiler
• Keep two frameworks (downloaded from Canvas) around at all time
• Framework 1: this is where you keep your source code and your compilers
• Framework 2: this is the framework left completely untouched.
• Hence, our compilers are here

• Debugging your work
• First check if the problem is your L2 compiler
• Manually inspect L2/prog.L1

to check if the semantics of the translated L2 program matches L2/prog.L1
• If the problem is your L2 compiler (the semantics don’t match),

then debug just your L2 source code (L2/src/*)
• If you think your L2 compiler is correct, then

debug your L1 compiler (next slide)
35

Tips about debugging your L1 compiler
• Double check whether the problem is actually your L1 compiler:

• Go to Framework2 where L1/bin/L1 is our L1 compiler
• Invoke our L1 compiler (disabling our optimizations)

to translate the L1 program generated by your L2 compiler
cd L1 ; ./L1c –O0 PATH_Framework1/L2/prog.L1

 (where PATH_Framework1 is where you have Framework1)
• Run the binary generated by our L1 compiler and check its output

• ./a.out &> tempOutput.txt ; vimdiff tempOutput.txt ../L2/tests/test25.L2.out ;
• Notice that you are still inside Framework2

• If the output matches the oracle one, then you know the problem is your L1 compiler
• Check the output of your L1 compiler (PATH_Framework1/L1/prog.S) and

compare it with the output of our L1 compiler
• vimdiff PATH_Framework1/L1/prog.S PATH_Framework2/L1/prog.S

36

Final notes about debugging your L2 compiler

• Comparing the output of our L2 compiler with yours
could be misleading

• Our L2 compiler implements slightly more advanced heuristics
(see Advanced_graph_coloring.pdf)
than the ones described in these slides

• But if you are curious, run our compiler with -v option
./L2c –v tests/test0.L2

37

Always have faith in your ability

Success will come your way eventually

Best of luck!

38

