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Graph coloring task

• Input   : the interference graph
• Output: the interference graph where each node has a color (or fail)

• Task:  Color the nodes in the graph
    such that connected nodes have different colors

• Abstraction: colors are registers

• After performing the graph coloring task:
Replace L2 variables with the registers specified by the colors 3



Register allocator

A graph-coloring register allocator structure

Graph 
coloring

f

Spill

f without variables and
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spill(f, var, prefix)

f with 
var spilledCode

analysis

Assign colors

Code generation

Interference graph, f

Interference graph
colored, f
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Colors
• At design time of the register allocator:

Map general purpose (GP) registers to colors

• The L1 (15) GP registers:
rdi, rsi, rdx, rcx, r8, r9, rax, r10, r11, r12, r13, r14, r15, rbp, rbx

• Each register has one node in the interference graph
• Pre-colored nodes

• Before starting coloring the nodes related to variables:
Color register nodes with their own colors
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A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling happens in this case
• Select the nodes you want to spill

HEURISTICS

v0

v2
v1
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v0

v2
r10

v1

rdi

rax

rsi

(@myF 3
  %v0 <- rdi 
  %v0 += rdi
  %v0 += rsi
  %v0 += r10
  %v1 <- %v0
  %v2 <- %v0
  rax <- %v0
  rax += %v1
  rax += %v2 
  return
)

rdi

r10
rax

rsi

@myf(%p0, %p1, %p2){
    return (%p0 *2 + %p1 + %p2) * 3
}

We just need 1 register
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r10

rdi

rax

rsi

(@myF 3
  %v0 <- rdi 
  %v0 += rdi
  %v0 += rsi
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}
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v0

r10

v1

rdi

rax

rsi

(@myF 3
  %v0 <- rdi 
  %v0 += rdi
  %v0 += rsi
  %v0 += r10
  %v1 <- %v0
  %v2 <- %v0
  rax <- %v0
  rax += %v1
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  return
)

rdi

r10
rax

rsi

@myf(%p0, %p1, %p2){
    return (%p0 *2 + %p1 + %p2) * 3
}

v2

We just need 1 register

No spilling necessary J
We need 3 registers L 13
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Heuristics

• You need to decide the heuristics to use

• Next slides describe simple heuristics you can implement
   (but you don’t have to. You can implement your own heuristics
    as long as you implement the coloring algorithm)

• We will see more advanced heuristics later
• You don’t have to implement them to complete your homework
• But if you do: 

your L2 compiler will generate more performant code
• At the end of this class: all final compilers will compete

15



A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling comes in here
• Select the nodes you want to spill
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Heuristic: select the nodes to remove

Observation: 
• Suppose G contains a node m with < K adjacent nodes
• Let G’ be the graph G without m
• If G’ can be colored with K colors, then so can G

Heuristic:
• Remove all nodes with #edges < #colors (15 in L1),

starting with the one with most edges and 
recalculating #edges after each removal
• After all nodes with < 15 edges are removed, 

remove the remaining ones starting from the one 
with the highest number of edges 

You can create your own heuristic
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v0

v2
r12

v1

rdi

rax

v1
v2

rsi

Let us assume we have only 4 registers. Hence, the heuristics is
• Remove all nodes with #edges < 4,

starting with the one with most edges and 
recalculating #edges after each removal

• After all nodes with < 4 edges are removed, 
remove the remaining ones starting from the one 
with the highest number of edges 

Node Degree

v0 6

v1 3

v2 3
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v0

r12

rdi

rax

v0
v1
v2

rsi

Let us assume we have only 4 registers. Hence, the heuristics is
• Remove all nodes with #edges < 4,

starting with the one with most edges and 
recalculating #edges after each removal

• After all nodes with < 4 edges are removed, 
remove the remaining ones starting from the one 
with the highest number of edges 

Node Degree

v0 4
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A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling comes in here
• Select the nodes you want to spill
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Heuristic: select the color to use

Heuristic:
• Sort the colors at design time starting from caller save registers
• Use the lowest free color
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v0

r12

rdi

rax

v0
v1
v2

rsi

Caller save Callee save

rdi r12

rsi

rax

Order: rdi rsi rax r12

Caller save Callee save

No color is available!

v1

v2
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A coloring algorithm

Algorithm:
1. Repeatedly select a node and remove it from the graph,

putting it on top of a stack

2. When the graph is empty, rebuild it
• Select a color on each node as it comes back into the graph,

making sure no adjacent nodes have the same color
• If there are not enough colors, the algorithm fails
• Spilling comes in here
• Select the nodes you want to spill
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Heuristic: select the variables to spill
Constraint: 
Never spill a variable created by a previous spill (to avoid infinite spilling)
Observation: 
Every time you spill:
• Liveness analysis
• Interference graph
• Graph coloring

Heuristic:
• Add all nodes to the graph at step 2 of the algorithm
• Mark all nodes that represent variables that have no color
• Spill all variables represented by these marked nodes

You can create your own heuristic (e.g., spill only one variable at a time)
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v0

r12

rdi

rax

v0
v1
v2

rsi

Caller save Callee save

rdi r12

rsi

rax

Order: rdi rsi rax r12

Caller save Callee save

v1

v2

Spill v0
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f without variables and
with registers

spill(f, var, prefix)

f with 
var spilledCode

analysis
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Register allocator

Graph 
coloring

f

Spill

f without variables and
with registers

spillAllVars(f_orig, 
 prefix)

Code
analysis

It can happen (it’s rare) 
that the graph coloring:
• Cannot color all variables
• Cannot spill any variable
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Register allocator

f

f without variables and
with registers

prog.L1

a.out

L2 program

Your 
work

L1c

L2c
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L2c

• Generating assembly from an L2 program
cd L2 ; ./L2c tests/test25.L2 

• L2c steps (this is useful to know to debug your work):
1) Generate an L1 program from an L2 one

L2/bin/L2 is invoked to generate L2/prog.L1 
(the name of the output file of your L2 compiler has to always be prog.L1)

2) Generate assembly code from the generated L1 program
L1/bin/L1 compiler is invoked to translate L2/prog.L1
The output is L1/prog.S

3) The GNU assembler and linker are invoked to generate the binary
The standalone binary generated is L2/a.out
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Homework #2: the L2 compiler

Register allocator

L2 function f

L2 function f with registers only

(stack-arg) translator

L2 function f with registers only and 
without (stack-arg)

L1 function

For every L2 function f
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The new L2 instruction

• It accesses stack-based arguments
   w <- stack-arg M
• It is equivalent to 

w <- mem rsp ?
where ? is M plus the number of 
bytes of the stack space used for 
local variables
• stack-arg 0 is always

the last stack argument
• stack-arg 8 is always

the second to last argument rsp

Ret addr

Local

Arg 8

Arg 7

(@myF 
    8 1
    r10 <- stack-arg 0
    r10 += 2
    rdi <- r10
    call print 1
    return
)
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Compiling your L2 compiler

• Build your L1 compiler:
• Keep your L1 compiler sources in L1/src
• Compile your L1 compiler: 

cd L1 ; make -j

• Build your L2 compiler:
• Build your homework #2 under L2/src
• Write new code to complete the translation from L2 to L1 in L2/src
• Compile your L2 compiler: 

cd L2 ; make -j
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Testing your full L2 compiler for homework #2

• Under L2/tests there are the L2 programs to translate

• To test: 
• To check all tests: cd L2; make test
• To check one test: ./L2c tests/test25.L2

• The output of a binary your compiler generates are in L2/tests
• For example, 

the output of L2/tests/test25.L2f 
is L2/tests/test25.L2.out
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Tips about debugging your L2 compiler
• Keep two frameworks (downloaded from Canvas) around at all time
• Framework 1: this is where you keep your source code and your compilers
• Framework 2: this is the framework left completely untouched. 
• Hence, our compilers are here

• Debugging your work 
• First check if the problem is your L2 compiler
• Manually inspect L2/prog.L1 

to check if the semantics of the translated L2 program matches L2/prog.L1
• If the problem is your L2 compiler (the semantics don’t match), 

then debug just your L2 source code (L2/src/*)
• If you think your L2 compiler is correct, then 

debug your L1 compiler (next slide)
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Tips about debugging your L1 compiler
• Double check whether the problem is actually your L1 compiler:

• Go to Framework2 where L1/bin/L1 is our L1 compiler 
• Invoke our L1 compiler (disabling our optimizations) 

to translate the L1 program generated by your L2 compiler
cd L1 ; ./L1c –O0 PATH_Framework1/L2/prog.L1

    (where PATH_Framework1 is where you have Framework1)
• Run the binary generated by our L1 compiler and check its output

• ./a.out &> tempOutput.txt ; vimdiff tempOutput.txt ../L2/tests/test25.L2.out ;
• Notice that you are still inside Framework2

• If the output matches the oracle one, then you know the problem is your L1 compiler
• Check the output of your L1 compiler (PATH_Framework1/L1/prog.S) and 

compare it with the output of our L1 compiler
• vimdiff PATH_Framework1/L1/prog.S PATH_Framework2/L1/prog.S

36



Final notes about debugging your L2 compiler

• Comparing the output of our L2 compiler with yours 
could be misleading

• Our L2 compiler implements slightly more advanced heuristics
(see Advanced_graph_coloring.pdf)
than the ones described in these slides

• But if you are curious, run our compiler with -v option
./L2c –v tests/test0.L2
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Always have faith in your ability

Success will come your way eventually

Best of luck!
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