
Dependences
Simone Campanoni
simone.campanoni@northwestern.edu



Outline

• Program Dependence Graph at the instruction granularity

• SCCDAG

• Semantics of dependences

2



PDG* is provided by NOELLE

This PDG is at the instruction granularity
• A dependence is either 
• Between two instructions or
• Between an instruction and a function parameter

3

[*] Jeanne Ferrante, Karl J. Ottenstein, Joe D. Warren.
The program dependence graph and its use in optimization. ACM Transactions on Programming Languages and System 1987



NOELLE’s PDG at the instruction granularity

• Dependences are clustered by function
• Dependences between instructions in two functions:

declare void @f1 (int8 *%0){
   …
   store 4, %0
   call @f2(%0)
   ..
}

declare void @f2 (int8 *%0){
   …
   %a = load %0
   ..
}

4



NOELLE’s Function Dependence Graph (FDG)

Different instances of the same C++ class (PDG)
5



PDG: iterating over dependences

Iterating over incoming edges

Include control dependences

Include memory dependences

Include variable dependences

Function to invoke per edge

Do you want 
to stop iterating?

Source of the current dependence edge
Current dependence

6



PDG: iterating over dependences

7

DGEdge

ControlDependenceDataDependence

VariableDependence MemoryDependence

MayMemoryDependence

MustMemoryDependence



PDG: iterating over dependences

8



PDG: iterating over dependences

Iterating over outgoing edges

9

dst



PDG: iterating over dependences

10
This code can be found here: noelle/examples/passes/pdg



NOELLE provides SCCDAG

• NOELLE provides:
• Program Dependence Graph (PDG)
• Function Dependence Graph (FDG)
• Loop Dependence Graph (LDG) (see NOELLE_loops slides/talk)

• All dependence graphs are instances of the same class arcana::noelle::PDG
• Because of importance of loops, NOELLE provides a rich class for them 

called arcana::noelle::LoopContent
• LoopContent includes:
• LDG
• SCCDAG
• And much more (see NOELLE_loops slides/talk)

11

• Different scope (i.e., code region they target)
• Dependences between dynamic instances of X

are not included in XDG
but are included in YDG where Y includes X



• We want to
• Execute j in parallel with i (extracting parallelism)
• Move j before i (code scheduling)

• Does j depend on i ?

• Do p and q point to the same memory location?
• Does q alias p?

Memory alias analysis: the problem (from 323)

i: (*p) = varA + 1
j: varB = (*q) * 2

i: obj1.f = varA + 1
j: varB= obj2.f * 2

12



Memory alias analyses included in NOELLE

• NOELLE relies on ~40 memory alias analyses to compute its PDG

• Most analyses are included in the following 3 frameworks:
• SCAF:  https://github.com/PrincetonUniversity/SCAF
• SVF:    https://github.com/SVF-tools/SVF
• LLVM: http://llvm.org

• NOELLE includes an extra alias analysis as well 
to capture corner cases that alias analyses above do not
• We see alias analysis to be used by NOELLE, rather than for NOELLE to provide 
• Hence, when another alias infrastructure will capture them, 

this NOELLE’s AA will be removed 13

https://github.com/PrincetonUniversity/SCAF
https://github.com/SVF-tools/SVF
http://llvm.org/


Outline

• Program Dependence Graph at the instruction granularity

• SCCDAG

• Semantics of dependences

14



NOELLE’s Hierarchical SCCDAG

• From the XDG

• To the SCC identifications

A

B C

D

E

15



NOELLE’s Hierarchical SCCDAG

• From the XDG

• To the SCC identifications

• To the SCCDAG

A

B C

D

E

SCC 0

SCC 1

16



NOELLE’s Hierarchical SCCDAG

• From the XDG

• To the SCC identifications

• To the SCCDAG

A

D

E

SCC 0

SCC 1

17



Outline

• Program Dependence Graph at the instruction granularity

• SCCDAG

• Semantics of dependences

18



Dependences
• Control dependences
• Data dependences
• Variable
• Memory

19



Dependences
• Control dependences
• Data dependences
• Variable
• Memory
• May
• Must

20



Post-Dominators
Assumption: Single exit node in CFG
Definition: Node d post-dominates node n in a graph
if every path from n to the exit node goes through d

B

C

D

D

C B

CFG

Immediate
post-dominator tree

B: if (par1 > 5)
C:     varX = par1 + 1
D: print(varX)

21



Control dependences
A node Y control-depends on another node X if and only if
1. There is a path from X to Y such that

every node in that path other than X is post-dominated by Y
2. X is not strictly post-dominated by Y

B

C

D

D

C2

B

CFG
Immediate
post-dominator tree

B: while (par1 > 5)
C:     varX = par1 + 1
C2:   …
D: print(varX)

C2
C

22



Dependences
• Control dependences
• Data dependences
• Variable
• Memory
• May
• Must

23



Data dependences

• A variable dependence is a def-use chain in LLVM
• A memory dependence from instruction i1 to instruction i2 exists iff *:
• the footprint of operation i1 may-alias the footprint of i2 (alias); 
• at least one of the two instructions writes to memory (update); 
• there is a feasible path of execution P from i1 to i2 (feasible-path) such that 

no operation in P overwrites the common memory footprint (no-kill).

Footprint refers to the memory locations accessed (read or written) 
by an instruction.

24

[*] Sotiris Apostolakis , Ziyang Xu , Zujun Tan , Greg Chan, Simone Campanoni, and David I. August
SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework. PLDI 2020.



The (LLVM) memory model

myObject0 = call malloc(4)
myObject1 = call malloc(10)

p = myObject0 + 4

Can p alias myObject1? 

25



The (LLVM) memory model

myObject0 = call malloc(4)
myObject1 = call malloc(10)

p = myObject0 + 4

Can p alias myObject1? 

26



Always have faith in your ability

Success will come your way eventually

Best of luck!

27


