17-2 :
(a) Perform binary search on each of the k arrays, starting with A_{k-1} down to A_0. Stop as soon as the key is found. This algorithm is clearly $O\left(\log^2 n\right)$. For infinitely many values of n, this upper bound is tight. Consider the case where $n = 2^m - 1$ for some integer m, and we are asked to find an element which lies in A_0. In this case all k arrays are full and the algorithm performs binary search on all of them. The run time is thus:

$$
\sum_{i=0}^{k-1} \log 2^i = \sum_{i=0}^{k-1} i = \Omega(k^2) = \Omega(\log^2 n)
$$

So this algorithm is $O(\log^2 n)$ for all n and $\Theta(\log^2 n)$ for infinitely many values of n.

(b) To insert an element do the following:

1. Find the the smallest value s such that array A_s is empty. If all are full, create a new A_{k} array and let $s = k$. $O(\log n)$

2. Increment the stupid $\langle n_{k-1}, n_{k-2}, \ldots, n_0 \rangle$ array. $O(\log n)$.

3. Merge (from merge sort) array A_0 with A_1. Take the result and merge it with A_2. Take the result and merge it with A_3, etc. Finally take the result and merge it with A_{s-1} and place the result in A_s.

Empty all arrays A_0 to A_{s-1}.

I believe it is clear that this procedure yields a structure containing the inserted element and does not violate any of the listed specifications. The run time of step 3 is on the order of the total run time for each of the $s-1$ merges performed. To merge two m element arrays takes $O(m)$. Thus the total run-time of step 3 is at most a constant multiple of:

$$
\sum_{i=1}^{s} \text{length}(A_i) = \sum_{i=1}^{s} 2^i < 2^{s+1} = O(n)
$$

So the insertion takes $O(n)$. This upper bound is tight when $n = 2^m - 1$ for any integer m.

(c) Suppose we want to delete element x and x is contained in array A_h. Let r be the smallest value such that A_r is full. Take some arbitrary element from A_r and place it in A_h in sorted order, $O(2^h)$. Now fill arrays A_0 through A_{r-1} with the values of A_r and empty A_r, $O(2^r)$. Now pat yourself on the back because you’re done, $\Omega(n^m)$.

12-2 :
There are two steps to sort the strings. First, build the radix tree consisting of the strings. Second, do a pre-order traversal of the resultant tree. The tree can be built by repeatedly entering strings into the growing tree. A string of length l can be entered into a radix tree in $O(l)$. Thus, since all the lengths of the strings sum to n, this gives a $O(n)$ construction. Now to output the correct order, we do a pre-order traversal in which we ignore (don’t output anything) nodes that don’t correspond to actual strings. There are at most n nodes in the tree, so the pre-order traversal runs in time $O(n)$.

13-2 :
(a) After every insert or delete, traverse the tree from root to leaf along any arbitrary path. Set $bh(T)$ to be the number of black nodes you encounter on your trip. Since the height of the tree is bounded by $O(\log n)$, you won’t hurt the $O(\log n)$ running time of insert and delete.

To find the bh of a given node, traverse down the tree until the node is reached. As you do this, keep track of how many black nodes you come across. Subtract this number from the bh of the root to obtain the bh of your target node.
(b) Traverse down the rightmost path of the tree until you reach a black node with black-height $bh[T_2]$. Such a traversal takes $O(\log n)$ operations. If such a node y in the rightmost path exists, then clearly there cannot be another node with a greater key value that also has black-height $bh[T_2]$. This is because the only black nodes with larger keys would lie in y’s right subtree, and thus would have a larger black-height than y. And there must be a node y in the rightmost path with black-height equal to $bh[T_2]$ because 1) $bh[T_1] \geq bh[T_2]$, 2) black-height is reduced by at most 1 as the path to the root is traversed, and 3) because the black height at the end of the path (a root) is 0.

(c) Let T_y be the left subtree of x and T_2 be the right subtree of x. Now place the subtree rooted at x in node y’s old place. It is easy to verify that this creates a valid binary search tree.

(d) Make x red to satisfy properties 1, 3, and 5. Run RB-INSERT-FIXUP on x to satisfy properties 2 and 4.

(e) In the case that $bh[T_1] \leq bh[T_2]$ we choose our y node to be the smallest keyed node in T_2 rather than the largest keyed node in T_1.

(f) As discussed we can find our y in $O(\log n)$ time. We can then attach on T_2 and call RB-INSERT-FIXUP which takes only $O(\log n)$. And that’s all that needs to be done, I think.