
Character Participation in Social Interaction

Robert Zubek

Northwestern University
1890 Maple Ave.

Evanston, IL 60201
rob@cs.northwestern.edu

Abstract

This paper introduces a technique for participation in
certain kinds of social interactions. By modeling their
temporal structure explicitly using a hierarchy of concurrent
Markov processes, we can track the development of the
interaction robustly, and drive it forward in a coherent
fashion. The approach is computationally inexpensive, and
exhibits desirable performance.

Introduction
Multiplayer games are filled with social engagement �
players treat each other not merely as abstract game
characters, but as living, social, emotional human beings.
They converse and deal with each other just as they would
in real life. But in trying to replicate these engagements in
computer-controlled characters, we immediately run into
numerous problems: conversations that guide human
interactions rely on tacit social conventions and
assumptions about the participants. This makes social
interaction notoriously complex, ambiguous, and noisy.

In this work we will focus on a mechanism that attempts a
range of such engagements believably, efficiently, and in
spite of the lack of complex language processing skills.
We accomplish this by focusing in particular on well-
structured interactions. Certain kinds of interactions
exhibit coherent temporal structure, though manifested
through ambiguous language; we expect modeling this
structure explicitly will provide background knowledge to
the system that will be sufficient to disambiguate the
language, and drive the interaction coherently forward.

In the following discussion we introduce hierarchical
interaction protocols, a technique for modeling some of
these more constrained social interactions. Under this
approach, explicit models of interaction produce behavior
that is both robust and very inexpensive computationally.
This approach is currently being used to implement a
language-based social interaction game, detailed below.
The system follows structured conversation, exhibits
desirable performance characteristics, and consumes a
trivial number of CPU cycles.

Motivating Example
The Breakup Conversation is a simulation �game�
currently being developed using hierarchical interaction
protocols. We will use it to illustrate the interaction
technique detailed in this paper.

The Conversation is an exploration of the dialogue that
signals the end of a romantic relationship. The player
connects with the simulated significant other over internet
messenger, and the goal is to perform a successful
breakup. Figure 1 presents an example.

Alice: can we talk?
Bob: :)
Bob: ok
Alice: it's kinda important
Bob: okay
Alice: it's about us
Bob: well
Bob: i've got to go back to work
Alice: i don't know how to break this to you
Bob: no!
Alice: but i don't think this is working out
Bob: no we're not talking about this right now
Alice: please
Bob: why are you doing it like this
Alice: i'm sorry
Bob: what does that even mean?
Bob: it's because i got no job huh?
Alice: i didn't mean to do it like this
Bob: you dislike that i'm unemployed
Bob: isn't it true
Bob: but anyway
Alice: no that's not true
...
Bob: please, honey, can you give me
 another chance?
Alice: no i don't think so
Bob: you're just being cruel
Alice: i didn't mean to
Bob: well then
Alice: look
Bob: you think i'm not what you were looking for
Alice: i'm sorry
Bob: i don't believe it
Bob: can you give me another chance?
Alice: that's not working out
Bob: that was such a mean-spirited thing
 to say to me

Figure 1. Conversation excerpt from a game prototype.
Computer character �Bob� shows movement from initial

problem intimation, through panic and refusal, to attempting
to guess what the problem is; a little later it engages several
emotional maneuvers. The Breakup Conversation, version

from May 2004.

The player begins by selecting parameters for the computer
character: name, gender, caricatured personality type, and
one of the possible relationship contexts. Then a chat
window opens, and the player tries to successfully get
through the breakup conversation. The interaction takes
place entirely via typed English text, in real time, and takes
the player on an exploration of breakup space.

The computer will have the knowledge of some patterns
typical of a breakup conversation and the ways of getting
through them, inspired by Berne (1968) as well as informal
observation; these include the �it�s not you it�s me� ritual,
the �why are you doing this to me� blame, the refusals to
discuss issues, and other ways in which people panic,
reason, plead, lay guilt, and so on. The character�s settings
determine which patterns and transitions are preferred. The
conversation ends once the computer character is
successfully persuaded that the relationship is over.

The overall interaction is modeled by decomposing
breakup conversations into a hierarchy of simpler
protocols, corresponding to the individual components.
This composite representation tracks conversation
progression on multiple levels simultaneously. The
highest-level protocols coordinate general �stages� of a
breakup � e.g. reasoning with the player about the breakup,
making them feel guilty about it, and so on. Below them
are protocols for getting through particular stages � for
example, the guilt-laying stage will decompose into a
number of strategies involving emotional blackmail and
pleading for pity. At the bottom of the hierarchy we finally
have very specific, low-level protocols: reacting to the
player�s evaluations, reacting to an apology, offering
apology, making a particular emotional blackmail
maneuver, recognizing a rationalization, recognizing a
breakup reason, trivializing the reason, rejecting the
reason, and so on.

Implementation
The technique works by modeling the interaction as a
hierarchy of partially observable Markov decision
processes (POMDPs) that continually evaluate the
situation and drive it forward.

The overall system works as follows. Because we can
never observe directly where the conversation is at any
given moment, we have to maintain multiple guesses about
the ongoing situation, represented as a collection of
POMDPs. A single partially-observable Markov decision
process is a probabilistic state space that estimates the
position of a particular protocol, and suggests actions
(illustrated in figure 2).

Each state is annotated with communicative expectations �
for example, specifying that at the beginning of a greeting

one person should say a familiar greeting phrase, the other
should respond, then one of them can ask about the health
of the other, and so on.

At every iteration of the control loop, incoming text is
treated as communication evidence, and categorized using
shallow parsing and pattern matching. Then the history of
observed evidence is taken into account, and the current
state of each process is reassessed. The result is an updated
belief of where we are in the overall situation. Finally, the
processes suggest what actions should be performed based
on their new beliefs.

In this manner, even though the state of the interaction
cannot be observed directly, it can be estimated based on
the history of communication. Unfortunately, our
observations will be uncertain, because language is noisy
and ambiguous. In practice, however, this turns out to be
quite satisfactory � the hierarchical, probabilistic
representations helps us cope with that.

victim panics 0.04 victim panics

bt : 0.04

evidence :
provided-breakup-reason

action:
exclamation-action

victim calms down 0.14

victim explains 0.12

victim continues 0.68

player answers 0.02

PANIC PROTOCOL

Figure 2. State space example. bt is a variable that holds

position belief for each state. Each state includes evidence
and action expectations.

SH
A

LL
O

W
 P

A
RS

IN
G

G
A

M
E

IN
TE

R
FA

C
E

G
A

M
E

IN
TE

R
FA

C
E

C
O

M
M

U
N

IC
AT

IV
E

A
C

T
ES

TI
M

AT
IO

N

INTERACTION STATE
ESTIMATION

A
C

TI
O

N
 /

 S
PE

EC
H

PR
O

D
U

C
TI

O
N

INDEXING AND CONCEPT TRACKING

EPISODIC MEMORY

Figure 3. System Architecture.

The system architecture is roughly as presented in figure 3.
Of course, the diagram is simplified; the major point is that
data flows through the system in a simple, single pass, and
a single iteration of the control loop is therefore quite
straightforward.

Control Loop
The system continually recomputes the position belief of
all processes, reassessing the overall situation and
suggesting actions to be performed.

A single iteration performs the following three steps:

1. Communicative act categorization. This first step
categorizes the incoming utterance into a number of
possible communicative acts: assistance operations (such
as request, or help), social standing operations (insult,
praise), speech acts, particular conversational moves, and
others as necessary for given situation.

Categorization is done mainly with shallow parsing and
pattern matching, in order to guarantee fast performance.
Simple parsing suffices thus far, thanks to the rich context
model provided by the probabilistic hierarchy; if this turns
out to be insufficient, a more robust recognition
mechanism can always be brought in to replace it. This
leads to reasonable speed and robustness of the system,
although more subtle expressions are, of course,
completely lost.

Categorization produces a value at, specifying what
communicative act or acts were observed at the given time.

2. Each POMDP tracks situation progress. After
categorization, the system tries to estimate the participants�
current position in each process. The state spaces are
probabilistic, therefore position in the state space is really a
probability of position. We call this a position belief,
designated as bt, distributed over all states.

Computing position belief is discuss briefly here, and
covered in greater detail in the appendix.

The interaction designer specifies the state space for the
given POMDP, including the probabilistic space transition
function denoted as τ (s, s�) for a transition from s to s�.1
The designer also specifies communication expectations
for each state, as a probabilistic relation between states and
communicative acts, denoted as e (s, a).

1 Quick note on notation: probability distributions are written in
the mathematical functional notation � for example, the belief
probability for a given state s at time t would be denoted bt(s). Of
course, this is not to imply they should be implemented as actual
function calls. An efficient implementation represents all those
distributions as matrices or vectors: bt (s) in C++ ends up as an
array b[s], τ (s,s�) becomes t[s,s�], etc.

Finding the new position means recalculating the position
belief distribution over all states: bt(s) for every state s in
state space S. Given that we have bt-1(s), the belief from
last iteration, current belief is calculated as follows:
)(sbt ∑

∈
−=

Ss
ititt

i

sbssasec)(),(),(1τ

This can be understood as follows. The probability of
being at some particular state s is: the probability of having
been at some neighboring state (bt-1) in the previous clock
tick, times the probability of having transitioned (τ), added
together over all neighboring states, summed and
multiplied by the evidence (e) for being at the current state
given what we�ve observed. ct is merely a normalization
constant, to make sure belief over all states adds up to one.
Details of this formula are provided in the appendix.

All of these elements are very easily computed. Transition
function τ and previous belief distribution bt-1 are a matter
of lookup, and e is specified at design time, although
finding the value of one of its inputs requires simple
language processing. So the computation above can be
represented as a sequence of vector operations (potentially
using sparse representations), rendering the position belief
calculations extremely fast.

3. Each POMDP suggests action production. Having
found present location, action production then becomes
very simple � in this case, implemented as template-based
text generation. Based on the current belief distribution,
each process suggests an action. All the actions are
aggregated and arbitrated, using a mechanism such as a
winner-take-all rule.

Performance
The simulation game has been in development since
January, and is not yet complete. More details will be
presented at the workshop; however, even just the
intermediate results should prove interesting.

The engine itself is written in C++. Processes are defined
in a custom definition language, which a Lisp-based
engine converts into highly efficient C++ code for the
interaction processes. This code gets compiled, along with
the engine, into a stand-alone DLL. Separately, a third-
party parser (the Link Parser, see Sleator and Temperly,
1991) is used for utterance processing, also as a separate
DLL. Finally, the game itself is a GUI wrapper around
both libraries.

Processing time for the engine is shown in figure 4, based
on a number of tests on a 1.8GHz Pentium 4. The figures
include parsing, processing, and text generation, but
exclude user interface and game-specific elements. Input
parsing and preprocessing takes roughly 0.01 second plus
0.003 second per word (with some variation). The rest of
the system (state estimation and action generation, which

are performed independently of input processing) take less
than 0.001 second per iteration on average, and therefore
do not even figure in performance calculations.

System Behavior
The hierarchical model introduces multiple levels of
representation of the same phenomenon, and therefore
increases redundancy � even if some particular process
loses track of the interaction, its parents retain broad
understanding of what goes on, and can cope with the
situation. This allows for gentle performance degradation
at edge of competence, and steering the conversation back
to familiar grounds.

The concurrent activation of multiple protocols means that,
if we can decompose an interaction into independent
components, those can be implemented cheaply as separate
processes. In practice, we find that this decomposition is
possible for a number of desirable interactions.

Stochastic modeling of these processes allows the system
to deal robustly with noisy and ambiguous inputs.
Informally speaking, communicative act categorization
present the system with multiple guesses about the player�s
utterance, and stochastic processes maintain numerous
concurrent hypotheses about what goes on in the
interaction. Communicative acts then help collapse the
processes into �correct� positions, and do so even if the
significance of player�s input wasn�t completely
understood. This aids in graceful recovery from confusing
situations.

The result is an interaction that is significantly more
complex than standard deterministic finite-state (or
pattern-matching) techniques, without a significant
increase in processing cost. The game manifests long-term
consistency, including coherence within a particular
breakup �stage�, and coherence in transitioning between
stages.

Finally, modeling the hierarchy as a network of concurrent
POMDPs allows for very efficient implementation.

Related Work
This project is closely related to work on probabilistic
finite-state dialogs. These techniques avoid complex
processing by collapsing both the conversation and the
task at hand into a unified finite state space, usually
represented as POMDPs (for example, Singh, Litman,
Kearns, and Walker, 2002). Hierarchical POMDPs are a
great extension to this approach (for example, Roy, Pineau
and Thrun, 2000), and subject of active research.

The approach is also indebted to the believable agents
research, such as by the Oz group (for an overview, see
Bates et al., 1991) or, more recently, Mateas and Stern
(2002).

Chatterbots with minimal state representation should also
be mentioned, such as Alice (Wallace, 2004) and
MegaHAL (Hutchens and Alder, 1998). They occupy a
similar niche but, unlike this project, do not model long-
term structure of conversation.

Appendix: POMDP Details
POMDP Description. Let },,{ 1 maaA K= be the set of
discrete actions that can be performed by participants, and
let each probabilistic interaction be a finite-state process
description consisting of:

• },,{ 1 nssS K= , the set of discrete states,
•]1,0[: →× SSτ , the state transition probability,

where)|'()',(sspss =τ ,
•]1,0[: →× ASe , the probability of observing

some expected action a at the state s, or:
)|(),(sapase = , and

•]1,0[: →× ASπ , the probability of performing
the action a at state s.

•]1,0[: →×Ζ Sb , the position belief, allowing for
the shorthand:),()(stbsbt = .

PROCESSING TIME IN SECONDS

POINT AT MEDIAN, LINE FROM FIRST TO THIRD QUARTILE

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7 8 9

INPUT LENGTH (WORDS)

PR
O

C
ES

SI
N

G
 T

IM
E

(S
EC

O
N

D
S)

Figure 4. System processing time per iteration. Performance
is roughly linear with input size, with acceptable variation.
Current system runs one iteration per second. The Breakup

Conversation, version from May 2004.

We require of the transition probability that

∑
∈

=∈∀
Ss

sstSs
'

1)',(: , and of position belief that

1)(: =Ζ∈∀ ∑
∈Ss

t sbt .

State Estimation. To find the agent�s position in the state
space, bt is calculated using popular state estimation
techniques for hidden Markov models (Jelinek 1997, Fox
et al. 2001).

Probability of being in a given state at time t is dependent
solely on the sequence of actions leading up to t:
)(sbt),,,,|(001 saaasp tt K−=
This probability is unknown, but assuming independence
of observed actions, we can explore the Bayes rule to
transform the above equation:
),,...,|(),,...,,|()(001001 saaspsaasapcsb ttttt −−=
Here tc is our denominator of Bayes� rule, and a

normalization factor to ensure that ∑
∈

=
Ss

t sb 1)(.

Markov assumption is then used to simplify the result.
Details are omitted due to space constraints (see Jelinek,
1997), but using the Markov assumption and total
probability theorem we arrive at the following:
)(sbt ∑

∈
−=

Ss
ititt

i

sbsspsapc)()|()|(1

Or, in previously defined notation:
)(sbt ∑

∈
−=

Ss
ititt

i

sbssasec)(),(),(1τ

Given probabilistic state estimation, recognizing which
processes are engaged becomes trivial. It simply requires a
special state to represent disengagement. Let each
interaction include a unique initial state s0, and
corresponding transitions. The state space will be treated
as disengaged when p (s0) = 1. Creating rules for engaging
or disengaging the entire state space then becomes a matter
of specifying appropriate values of e (s0, A), τ (s0, S), and τ
(S, s0).

Action Production. Each state is annotated with actions to
be performed, including communication and self-
adjustment. State-based policy π determines which action
will be produced. For many states and actions it can be the
case that π (s, a) = e (s, a). However, due to the complex
nature of these interactions, as well as complex aesthetic
requirements of entertainment products, we do not intend
for the policy to be learned automatically.

Deictic Representation. One element had not been
mentioned before. The system uses a semantic network to
store additional knowledge about the setting, and deictic
markers (Agre and Chapman, 1987) to coordinate between

probabilistic processes and the network. Deictic markers
extend the essentially propositional POMDPs, allowing for
limited relational representation. Unfortunately, due to
space constraints, this is as much as we�re going to say
about the semantic network or deixis here.

Acknowledgements
I would like to thank my colleagues at the computer
science department, and especially Ian, Robin, and Ayman,
for their insightful comments and critique of this work.

Bibliography
Agre, P., and Chapman, D. 1987. �An Implementation of a
Theory of Activity.� In Proceedings of AAAI-87. Menlo
Park, CA: AAAI Press.

Bates, J., Loyall, B., and Reilly, W. S. 1991. �Broad
Agents.� In Proceedings of the AAAI Spring Symposium
on Integrated Intelligent Architectures, Stanford
University, March 1991. SIGART Bulletin. Vol. 2. No. 4.
August 1992.

Berne, E. 1968. Games People Play: The Psychology of
Human Relationships. New York, NY: Grove Press.

Fox, D., Thrun, S., Burgard, W., and Dellaert, F. 2001.
�Particle Filters for Mobile Robot Localization�. In
Doucet, A., de Freitas, N., and Gordon, N., eds. Sequential
Monte Carlo Methods in Practice. New York, NY:
Springer.

Hutchens, J., Alder, M. 1998. �Introducing MegaHAL.� In
D. M. Powers (ed.) Proceedings of NeMLaP3/CoNLL98,
271-274. Somerset, NJ: Association for Computational
Linguistics.

Jelinek, F. 1997. Statistical Methods for Speech
Recognition. Cambridge, MA: MIT Press.

Mateas, M. and Stern, A. 2002. Architecture, Authorial
Idioms and Early Observations of the Interactive Drama
Façade. Technical Report CMU-CS-02-198, School of
Computer Science, Carnegie Mellon University.

Roy, N., Pineau, J., and Thrun, S. 2000. �Spoken Dialogue
Management Using Probabilistic Reasoning.� In
Proceedings of ACL-2000, Hong Kong.

Singh, S., Litman, D., Kearns, M., and Walker, M. 2002.
�Optimizing Dialogue Management with Reinforcement
Learning: Experiments with the NJFun System." Journal
of Artificial Intelligence Research, 16, pp. 105-133.

Sleator, D., and Temperley, D. 1991. Parsing English with
a Link Grammar. Technical Report CMU-CS-91-196,
School of Computer Science, Carnegie Mellon University.

Wallace, R. S. 2004. The Anatomy of A.L.I.C.E.
http://www.alicebot.org/anatomy.html. Last access 5/24/04

