
An Incremental Model for Developing Computer-based Learning 
Environments for Problem-based Learning 

 
 

Lin Qiu and Christopher K. Riesbeck 
Department of Computer Science, Northwestern University,  

Evanston, Illinois 60201 USA 
{qiu, riesbeck}@cs.northwestern.edu 

 
 

Abstract 
 

Problem-based learning (PBL) is a pedagogical 
strategy that centers learning activities around the 
investigation and development of solutions to complex 
and ill-structured authentic problems. It requires 
additional support and resources for students and 
instructors to use it in schools. Computer-based 
interactive learning environments have been used to 
provide students authentic and supportive settings for 
PBL. These systems, however, require significant up-
front development effort before they can be put into 
use. In this paper, we describe an incremental model 
that allows instructors to author the learning 
environment during real use. In our model, an 
instructor is part of the feedback loop, complementing 
system feedback and collecting materials to be 
incorporated into the system. By working within the 
system, the instructor can observe detailed traces of 
student learning activities in the system and provide 
individualized coaching and critiquing. We describe 
our experience in developing Corrosion Investigator, a 
web-based learning environment, as an exemplar of 
our model. We focus on how the system is designed to 
facilitate instructor involvement and support 
incremental authoring.  We present empirical results 
showing materials collected through use and benefits 
to the students and teachers. 
 
1. Introduction 
      With a high demand for changes to the current 
drill-and-practice methodology of instruction, 
problem-based learning (PBL) has become a popular 
new paradigm of teaching. PBL centers learning 
activities around the investigation and development of 
solutions to complex and ill-structured authentic 
problems [2]. Students acquire problem-solving skills 
and knowledge through self-directed learning with 
guidance and resources provided by the instructor. 

While PBL offers an effective vehicle to improve 
teaching and learning, a number of difficulties occur in 
creating or implementing it in schools [5]. For 
example,  doing activities in solving realistic problems 
such as collecting test samples or running experiments 
can be expensive, time-consuming, and even 
dangerous. Activities such as free exploration and idea 
testing can be overwhelming for students. Instructors 
need to provide additional monitoring and coaching to 
ensure students achieve desired learning goals. 

      To address these problems, computer-based 
interactive learning environments have been developed 
to help delivering PBL, e.g., sickle cell counselor [1], 
and Alien Rescue [6]. They organize components such 
as simulation, scaffolding tools, and student portfolios 
into a challenge-based structure. They provide a safe 
and responsive setting with easy access to task 
information, individualized feedback and critiquing, 
just-in-time learning, and scaffolding for the learning 
process. Such self-sufficient software environments 
reduced the instructor's time and effort from preparing 
and facilitating learning activities. They are, however, 
difficult and expensive to build. In order to support 
purely computer-based accurate feedback, the 
vocabulary of operations and situations in the system 
has to be specified in advance so that rules can be 
written.  Once deployed, students can only do what the 
system has been prepared to support. It is considerably 
harder for instructors, as non-programmers, to modify 
a computer application when they want to customize it 
for their courses.  

      How then do we develop systems that do not need 
significant upfront effort but are still capable of 
supporting PBL? In the following, we describe a 
development model that allows instructors to 
complement computer generated feedback and 
incrementally develop PBL learning environments 
during real use. We believe it presents a practical and 



middle-road approach for developing PBL learning 
environments.  

2. Approach 
      In PBL there is usually no single right answer to 
the problem and many paths to the solutions. Students 
are encouraged to approach the problem with their own 
strategies. Such open-ended activity means that the 
resources needed to support PBL can be cross-
disciplinary and diverse. From our observations and 
experience in developing PBL curricula, we found that 
the development of content for PBL is an incremental 
staged process. First, curriculum designers design a 
PBL curriculum by choosing target content and skills, 
creating a motivating and authentic problem, designing 
possible student activities, determining supporting 
resources, and developing an evaluation strategy. Then 
the design is put into practice with students. Though 
the design was created by designers using their best 
knowledge, unanticipated situations still occur during 
practice. By handling those situations, the instructor 
improves his/her understanding of how students 
approach the problem, what common mistakes students 
make, and what appropriate advice to give. Through 
such learning experiences in using the curriculum, the 
instructor continuously incorporates new materials into 
the curriculum. Finally, the curriculum contains 
enough materials to handle most common cases and is 
ready to be shared and used by other instructors.  

 
Figure 1. Incremental development model of 

computer-based learning environments. 
 

      Based on the above analysis, we propose a 
software development model (Fig. 1) that observes the 
natural incremental development process of PBL 
curriculum. In our model, an instructor works together 
with a system to provide support to PBL. While the 
system provides the primary learning environment 
with which students interact, the instructor 
complements the feedback from the system by helping 
to handle the situations that the system cannot. The 

instructor can also verify the feedback generated by the 
system before it gets to the students. More importantly, 
the instructor can introduce new materials into the 
system based on usage to incrementally improve the 
system's performance. Our model allows the instructor 
to have the benefits provided by computer-based 
environments, and at the same time lets the system be 
improved on demand to fit the needs of actual students. 
This supports content repair, refinement, adaptation 
and customization to diverse populations.   

 

 
Figure 2. Traditional development model of computer-

based learning environments. 

      Our model is different than the traditional 
development model shown in Figure 2. In the 
traditional way of system development, developers 
work with domain experts and educators to make sure 
the system has complete coverage of all possible 
actions and their appropriate feedback. This is not only 
hard during the authoring time, but may result in 
unnecessary effort spent on cases that rarely happen. 
More importantly, commonly occurring critical cases 
may fail to be collected. Furthermore, there is no easy 
way to add new operations, coaching, or critiquing 
during instruction time in order to incorporate new 
developments. Our approach is to let the instructor 
work with the learning environment and introduce new 
materials into the system. This allows authoring and 
instruction to happen at the same time and keeps the 
system from totally depending on pre-programmed 
content. There is no need to anticipate and implement 
all possible situations upfront. Instead, the system 
gradually migrates into a complete system through use. 
By having an instructor in the feedback loop, systems 
can be put into use during early development stages 
where automatic feedback generation is not yet mature 
and reliable. Issues not anticipated during system 
design can be explored and incorporated into the 
system during real use. This capability for 



customization can also keep systems up to date and 
usable after deployment.  

      In the following, we describe our experience in 
developing Corrosion Investigator, a PBL learning 
environment, as an exemplar of our model.  

3. Corrosion Investigator 
      In the engineering domain, students need to learn 
not only engineering concepts but also the use of the 
conceptual knowledge as a set of tools. One important 
skill they need to learn is how to solve problems by 
running experiments and using the results to support or 
refute possible hypotheses. Corrosion Investigator (CI) 
is a computer-based learning environment for teaching 
environmental engineering students biological and 
engineering concepts in the domain of biofilms. In CI, 
students take the role of consultants helping a paper 
processing plant diagnose recurring pipe corrosion. 
Students need to decide which tests to run and which 
test results support the claims they make in order to 
solve the problem in a timely and economical manner. 
This requires students to fully understand the purposes 
of the tests and the implication of the test results.  

 
Figure 3. The Experiment screen in CI. 

      CI is built based on the Indie Goal-based Scenario 
framework [4]. It consists of a set of interfaces: a 
welcoming screen showing the "challenge" document, 
a "reference" interface where students can browse 
materials describing the scenario and domain content, 
an "experiment" interface where students can order 
tests and collect results (Fig. 3), a "report" interface 
where students can construct arguments for and against 
possible diagnoses, using the evidence gathered from 
the tests along with explanations, and a "feedback" 
interface where students can read and respond to 

comments from their supervisor on their activities. 
More detailed description of CI can be found in [7,8]. 

      CI has a number of features to support incremental 
development and allow interactions among the 
students, system, and instructor to be captured and 
incrementally incorporated into the system: 

 The system provides an authoring tool to let 
instructors edit the content of the scenario with no 
programming. The authoring tool has a form-based 
web interface that allows the instructor to edit test 
specifications, test result generation, result display 
formats, background information, and so on. This 
lowers the barrier of content authoring and puts the 
instructor in charge during the incremental 
authoring process. It lets the instructor add and 
modify tests and explanations as necessary during 
use. 

 The system's web-based architecture gives the 
instructor anytime, anywhere authoring access, and 
makes changes immediately available to students. 
All the content information is sitting on a central 
server. Both students and the instructor access the 
learning environment through a web browser. 
Changes made though the authoring tool update the 
content saved on the server and are immediately 
reflected in the learning environment. This web-
based architecture avoids the difficulty of 
standalone software that has to be reinstalled on 
many computers. 

 The system captures all student input, so that 
failures can guide authoring. For example, to be 
more authentic and encourage brainstorming, CI 
does not provide a menu of available tests. Instead, 
students specify tests by entering test names into a 
textbox. The system uses simple keyword matching 
to retrieve close matches. All student input is 
recorded and reviewed by the instructor. 
Unexpected but reasonable names can be added 
into the system using the authoring tool 
immediately. This also leads to discovering tests or 
test options that should be added to the system. 

 The system puts the instructor in the loop. In 
particular, CI includes email links where students 
can contact characters in the scenario: the plant 
foreman, the plant manager, the scientific 
consultant and the supervisor. These emails are 
actually answered by the instructor. This approach 
to instructor participation provides a means to 
complement the system functionality, e.g., 
providing extra background information and test 
results, or coaching and advising, while observing 
the fidelity and integrity of the problem context.  



 The system captures instructor feedback. 
Specifically, CI organizes and displays student 
activities in the system (including tests that 
students have run, reasons for running those tests, 
claims and supporting evidence created, and the 
time and money that have been spent) into an 
interactive report form designed for easy critiquing. 
The instructor, in the role of supervisor in the 
scenario, can click on any item in the report and 
add comments to it. Students see and respond to 
these comments in the "feedback" interface. These 
critiques, based on actual student actions, are 
stored in the system. By adding patterns to these 
critiques, the system can suggest these critiques on 
future reports. Allowing instructors to work 
alongside the students providing ongoing formative 
coaching is considered an effective approach to 
foster learning in the cognitive apprenticeship 
model [3]. 

 
      Working as middleware between the students and 
instructor, CI provides an authentic and scaffolded 
learning environment for students to perform PBL 
while alleviating the instructor from the work of data 
generation, facilitating the instructor in real-time 
assessment, and helping the instructor in accumulating 
the learning content in the system.  

4. Results 
      In May of 2002, Corrosion Investigator was used 
in a class by six first-year graduate students in the 
Civil Engineering Department at Northwestern 
University. They were asked to form into two groups 
of three each, which resulted in a 3-male group and a 
3-female group. Students completed a survey on their 
experience at the end.  

      According to the students' responses shown in 
Figure 4, overall the system was satisfying for doing 
the project. According to the professor, who created 
the scenario and delivered it previously without the 
software, the software significantly reduced his 
workload during the project phase. The workload was 
reduced from 24 man-hours to 4 man-hours. 
Meanwhile, students benefited from the immediate 
feedback generated by the system. The absence of 
delay reduced the project time from 8 weeks (which is 
the length when all the test results were generated 
manually by the professor) to 3 weeks. According to 
the professor, the quality of the student final reports 
stayed the same whether the students used the software 
or not. Both the students and the instructor agreed that 
the software should be used in next year's class. 
Though the data was based on six participants, it is still 

encouraging to see that Corrosion Investigator was 
capable in facilitating PBL. 

Student Opinions of Corrosion Investigator 
Performance

0
1
2
3
4
5

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Survey Questions

D
eg

re
e 

of
 

D
is

sa
tis

fa
ct

io
n

team 1
team 2

 
1 = strongly agree   5 = strongly disagree 

 
Q1: I would like to use the system to construct a report rather than 
write it all by myself. 
Q2: Overall, the interface makes me feel comfortable. 
Q3: The system has provided enough support for doing the project. 
Q4: Overall, this is an excellent system for doing the project. 
Q5: Overall, the project has been completed successfully. 
Q6: I prefer to use this system to run the tests and get the results 
back, instead of doing that via email with a person. 
Q7: I would recommend this system to be used in next year's class. 

Figure 4. Student opinions of Corrosion Investigator 
performance. 

 
Test names

0

5

10

15

20

25

Culturing DGGE FISH Hydrology Water
ChemistryTests

initial design
after first use

 
Figure 5. Test names for different tests in Corrosion 

Investigator. 
 
      When CI was first created, there were 39 test 
names in the system. During the first use, 34 new 
names were discovered through student input and 
added to the system, which resulted in a total of 87% 
increase of test names in the system. This significantly 
improved the system's coverage of student test 
inquiries. Figure 5 shows the increase of test names for 
each test. In addition, one student input helped us to 
realize that test variable "Fe" was missed from the 
Water Chemistry test. This test option and its 
corresponding test results were then added into the 
system using the authoring tool. CI's web-based 
architecture and authoring interface facilitated the 
improvement of the learning environment without 
interrupting the on-going project. 



Table 1. Sample critiques on student work. 

Student work Critique 
Test Result: [ Water Chemistry check 
point 9]SO4: 83.08 mg/L  
Reason: High sulfate is still present, 
indicating SRB's may be active.  

This is NOT evidence 
supporting chemical 
corrosion as a cause.  
 

Test Result: [ Water Chemistry check 
point 3]pH: 6.378  
Reason: Neutral pH, indicating process is 
probably not a chemical one  

There are other 
possibilities for 
chemical corrosion at 
neutral pH mn's- should 
acknowledge this.  

Test Result: [ Water Chemistry check 
point 3]H2S: 42.204 mg/L  
Reason: Rotton egg like odor indicative 
of sulfate reduction. High H2S 
concentration is indicative of SRB 
populations  

That is correct- H2S a 
byproduct of SRB 
metabolism.  
 

      

     Table 1 shows some sample critiques from the 
instructor on a student generated claim and supporting 
evidence with test results and explanation. We 
analyzed the critiques and categorized them into three 
types. One type confirmed the correctness of the 
student work. A second type pointed out that the work 
is wrong, e.g., the use of a piece of evidence did not 
support the claim, or an ordered test was not necessary. 
The third type asked for more proof or explanation to 
justify the action, e.g., comparing the test results to 
other sites, or excluding other possibilities. Most of the 
critiques were considered reusable when reviewed by 
another domain expert. These critiques give us a basis 
for adding critiquing assistance in CI. We have been 
developing a scheme that uses the instructor's previous 
critiquing record and the current context to suggest 
likely critiques to the instructor. The instructor will be 
able to select or modify appropriate critiques to send to 
the students. This can save the instructor from writing 
the same critiques over and over again, but more 
importantly, it can prompt for overlooked situations 
and reduce the chance of missing critiques.  

5. Discussion 
      What is the difference between pilot testing and the 
development process in our model? Pilot testing is 
usually done before the real use of a system. Its 
purpose is to make sure that the system has enough 
knowledge to function on its own when it is put into 
use. In contrast, systems in our model may never 
become completely autonomous. They may always 
need an instructor in the feedback loop to complement 
the limitation of the computer's ability such as natural 
language understanding. However, the instructor will 
be doing less and less work as the system becomes 
more and more competent to carry on work such as 
result generation, scaffolding, candidate critique 
selection.  

       Our approach is similar to the Wizard of Oz 
approach [9] in system development. Our model has a 
wizard working behind the system, but not for 
collecting data at a separate prototyping stage. In our 
model, such a process happens during the use of the 
system. Furthermore, the instructor does not pretend to 
be a computer, but works with the computer to 
complement the system. 

        To support open-ended learning, we believe the 
development of computer-based learning environments 
for such learning should also be open. Systems in our 
model facilitate incremental development by (1) 
starting with a sound educational framework (2) 
allowing early deployment and testing through 
instructor involvement (3) providing an architecture 
and interface for in-use authoring. We believe 
developing systems in such a manner provides a 
promising means for facilitating the development and 
customization of computer-based learning 
environments for PBL. 

6.  References 
[1] Bell, B. L., Bareiss, R., & Beckwith, R. (1994). Sickle 

cell counselor: A prototype goal-based scenario for 
instruction in a museum environment. Journal of the 
Learning Sciences, 3, 347-386 

[2] Boud, D, and Feletti, G. (1991). The Challenge of 
Problem-based learning. London: Kogan Page. 

[3] Collins, A., Brown, J.S., & Newman, S. (1989). 
Cognitive Apprenticeship: Teaching the Craft of 
Reading, Writing, and Mathematics, In L.B. Resnick 
(Ed.) Knowing, Learning, and Instruction: Essays in 
Honor of Robert Glaser, Lawrence Erlbaum Associates, 
Hillsdale, NJ. 

[4] Dobson, W.D. (1998). Authoring Tools for Investigate 
and Decide Learning Environments. Ph.D. thesis. 

[5] Hoffman, B., and Ritchie, D. (1997). Using multimedia 
to overcome the problems with problem based learning. 
Instructional Science, 25: 2, 97-115. 

[6] Liu, M, Williams, D., & Pedersen, S. (2002). Alien 
Rescue: A Problem-Based Hypermedia Learning 
Environment for Middle School Science. Journal of 
Educational Technology Systems, 30(3). 

[7] Qiu, L., Riesbeck, C. K., and Parsek, M. R. (2003). The 
Design and Implementation of an Engine and Authoring 
Tool for Web-based Learn-by-doing Environments. 
Proceedings of  ED-MEDIA, Hawaii, June 2003.  

[8] Qiu, L., Riesbeck, C.K. (2004) Building Web-based 
Interactive Learning Environments to Facilitate 
Delivering Problem-based Learning. To appear at the 
Annual Conference of the American Educational 
Researchers Association (AERA), 2004 

[9] Wilson, J., and Rosenberg, D. (1988). Rapid 
prototyping for user interface design. In Handbook of 
Human-Computer Interaction, M. Helander ed., New 
York, North-Holland. 


