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New Algorithm Improves Branch Prediction
Better Accuracy Required for Highly Superscalar Designs

by Linley Gwennap

Intel’s P6 processor (see 090202.PDF) is the first to
use a two-level branch-prediction algorithm to improve
accuracy. This algorithm, first published by Tse-Yu Yeh
and Yale Patt, has the potential to push accuracy well
beyond the 90% level achieved by the best processors
today. As future processors look to improve performance
by increasing the issue rate and/or extending the
pipeline depth, the two-level algorithm is likely to be-
come more common.

Branch prediction has been a problem for CPU de-
signers since the advent of pipelining. A pipelined pro-
cessor must fetch the next instruction before the current
one has executed. If the current instruction is a condi-
tional branch, the processor must decide whether to fetch
from the target address, assuming the branch will be
taken, or from the next sequential address, assuming the
branch will not be taken. An incorrect guess causes the
pipeline to stall until it is refilled with valid instructions;
this delay is called the mispredicted branch penalty.

Processors with a simple five-stage pipeline typi-
cally have a two-cycle branch penalty. For a four-way
superscalar design, however, this could mean a loss of
eight instructions. If the pipeline is extended, the branch
penalty usually increases, resulting in the loss of even
more instructions. Since programs typically encounter
branches every 46 instructions, inaccurate branch pre-
diction causes a severe performance degradation in
highly superscalar or deeply pipelined designs.

Initial efforts at branch prediction used simple al-
gorithms based on the direction of the branch. Among
commercial microprocessors, the MIPS R6000 pioneered
the use of compiler “hints” to direct branch prediction.
Digital’s 21064 was the first microprocessor to store
branch history information, with the P6 leading the way
to two-level prediction. This article reviews these earlier
algorithms before explaining the new two-level method
in more detail.

Simple Hardware Can Achieve 65%

For scalar processors with relatively short pipelines,
branch prediction is less of a concern. In fact, for proces-
sors with a branch delay slot, the branch penalty can be
as little as one cycle. The default “prediction” method for
simple pipelined designs is to assume that branches are
not taken, always fetching sequential instructions. The
486 and most embedded processors use this scheme be-
cause of its simplicity and low cost.

It turns out, however, that conditional branches are
taken more often than not. Most programs make heavy
use of loops, which repeatedly branch to the same ad-
dress. Simulations show that conditional branches are
taken about 60% of the time in the SPECint89 suite and
more often in scientific code such as the SPEC{p89
benchmarks[1]. Thus, a simple optimization is to always
predict branches to be taken.

A better algorithm takes into account the direction
of the branch. Backward branches typically complete
loop iterations and thus are taken as much as 80% of the
time or more. Forward branches are more difficult to
predict but tend to be not taken more often than taken.
Thus, by simply looking at the direction of the branch
(usually available as the sign bit of the offset), a proces-
sor can predict backward branches taken and forward
branches not taken. This BTFN algorithm succeeds
about 65% of the time for SPECint89. MicroSparc-2 and
most PA-RISC processors use BTFN.

With appropriate instruction-set hooks, the com-
piler can improve branch-prediction accuracy. Because it
has access to the source code, a good compiler can recog-
nize code sequences that are likely to branch, such as
loops, and those that are unlikely to branch, such as ex-
ception checking. Current MIPS and PowerPC chips,
among others, implement special branch instructions
that encode the compiler’s prediction in a single bit.

Compilers can take further advantage of these pre-
dicted branch instructions by using a technique called
profiling or feedback-directed compilation. After the pro-
gram is initially compiled, it is run using test data to de-
termine the typical direction of each branch; the pro-
gram is then recompiled to adjust the branch-prediction
bits. According to IBM, its compilers achieve 75% accu-
racy on SPECint92 using this technique.

Dynamic Prediction Uses History

The previous algorithms are classified as static
schemes, because any particular branch is always pre-
dicted in the same way whenever it is encountered. To
achieve greater accuracy, dynamic algorithms take into
account run-time information. The processor learns from
its mistakes and changes its predictions to match the be-
havior of each particular branch.

A dynamic algorithm keeps a record of previous
branch behavior, allowing it to improve its predictions
over time. A simple scheme, published by James Smith
in 1981[2], maintains a single history bit for each branch.
When a branch is encountered, it is predicted to go the
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Figure 1. In the two-bit Smith algorithm, the two history bits imple-
ment a state machine with four possible states: strongly taken (ST),
weakly taken (WT), weakly not taken (WNT), and strongly not taken
(SNT). In ST and WT, future branches are predicted taken; in WNT
and SNT, branches are predicted not taken.

same way it did the previous time, as indicated by the
bit. This technique can push accuracy to 80%.

As a practical matter, there are two ways to imple-
ment this scheme. The history bits can be kept in the in-
struction cache, for example, one per every four instruc-
tions. When instructions are fetched from the cache, the
history bit comes along. If the bit is set, that group of in-
structions contains a predicted-taken branch, and the
fetch stream is redirected. In this example, the storage
overhead would be less than 1% of the cache area.

Although this method—used by Digital’s Alpha,
AMD’s K5, and other processors—provides dynamic pre-
diction with minimal cost, it has some drawbacks. Some
groups of instructions will not contain a branch, wasting
the history bit. Groups with multiple branches create
interference, as the history of one branch overwrites that
of another in the same group.

Processors such as Pentium store the history bits in
a separate branch history table (BHT), assigning one
entry per branch. By avoiding the interference and un-
used bits of the previous scheme, the BHT offers im-
proved accuracy. Alternatively, similar accuracy is
achieved with fewer entries. The BHT, however, must
maintain its own set of tags, greatly increasing the
amount of storage required.

Given the overhead of tag storage, most processors
with a separate BHT store two bits of history per entry

History Pattern
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Figure 2. The two-level algorithm uses the contents of a branch his-
tory register as an index into a pattern table. Each table entry con-
sists of a two-bit saturating up/down counter. The most-significant
bit of the indicated table entry provides the branch prediction.

instead of just one bit. In this method, also elucidated by
Smith[2], the two bits can be thought of as a saturating
counter that is incremented when the branch is taken
and decremented when it is not; the most-significant bit
is used to predict future occurrences. Another way to
look at this implementation is as a state machine, which
is depicted in Figure 1.

The advantage of the two-bit method is that a single
unusual iteration will not change the predicted direc-
tion. For example, if a branch has been taken many
times in succession, the state machine will be in the
Strongly Taken state (3). If the branch is then not taken,
the history bits will indicate Weakly Taken but still pre-
dict the next iteration as taken. Only if the branch is not
taken two or more times consecutively will the predic-
tion change to not taken. This hysteresis effect can boost
prediction accuracy to 85% on SPECint92, depending on
the size and type of history table that is used.

Two-Level Algorithm Improves Accuracy

Even at 85%, one out of every six branches is mis-
predicted, a rate that can significantly degrade perfor-
mance in a highly superscalar design. Consider a four-
way superscalar processor with a mispredicted branch
penalty of three cycles. With one branch every five
instructions, an accuracy of 85% creates a penalty of
(4 x3 x15%) + 5, or 0.4 cycles per instruction (CPI). This
penalty is a major factor for a processor with a peak
throughput of four instructions per cycle (0.25 CPI).

For further improvement in prediction accuracy,
Intel’s P6 designers turned to the two-level algorithm de-
veloped by Yeh, a Ph.D. candidate, and Prof. Patt at the
University of Michigan. The two researchers first pub-
lished this technique in 1991[1] and continued refining
it[3,4] until Yeh graduated in 1993; he is now employed
by Intel on the P7 program.

A simplistic approach to improving the Smith algo-
rithm is to increase the number of history bits beyond
two using the same up/down counter. This approach re-
tains more history information but does little to improve
accuracy. In fact, it is actually more sluggish than the
two-bit design when a branch changes from consistently
taken to consistently not taken, or vice versa.

The two-level algorithm instead looks for patterns
in an extended history register. For example, suppose a
branch has been taken three times in a row, then not
taken once. Will the branch return to “taken” on the next
iteration, or will it now be consistently not taken? To re-
solve this issue, the algorithm looks at previous behavior
when this same sequence has occurred, using historical
data to generate a prediction.

Implementation of this algorithm requires two lev-
els of storage, as Figure 2 shows. For each branch, a his-
tory register maintains the state of the last £ branches.
Unlike a saturating counter, this circuit is a shift regis-
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ter that represents taken branches with a 1 and not-
taken branches with a 0. Each branch has a pattern
table consisting of 2¥ entries. Each entry implements a
two-bit saturating up/down counter that tracks the re-
sults of previous iterations that occurred when the his-
tory register was in a given state.

When a branch is encountered, the contents of the
history register are used to index into the pattern table,
selecting the entry that corresponds to the recent history
of that branch. As in the Smith algorithm, the two bits of
that entry indicate the prediction. After the branch is re-
solved, the result (taken or not taken) is shifted into the
history register and used to update the appropriate
entry in the pattern table. To improve performance on
tight loops, designs may use the prediction to specula-
tively update these fields, correcting them in the case of
a misprediction.

Practicality Forces Simplification

As with simpler dynamic approaches, storing a
unique history for every possible branch is impractical,
so history is kept for only the most recent branches. The
two-level approach, however, requires much more stor-
age than the two-bit design: for each branch, there is a
pattern table of 2 x 2% bits, as Figure 3 shows. Even a rel-
atively limited implementation with k=4 requires 18
times as much storage as the simple two-bit design.

To allow practical implementations with larger val-
ues of £, Yeh and Patt propose reducing the number of
pattern tables by combining multiple branches in each
table[4]. Branches can be grouped into sets based on
their address (using a hashing algorithm), opcode, or
some other characteristic. Branches in the same set use
the same pattern table. In their taxonomy (see sidebar),
Yeh and Patt call this the PAs algorithm, as opposed to
the PAp method described above.

Although combining multiple branch histories
causes some interference, this loss is compensated by the
ability to implement larger pattern tables and thus
larger history registers. For a given hardware cost, PAs
delivers better accuracy than the full-blown PAp. Yeh
and Patt simulated a variety of designs that all use
about 8 Kbits of storage; at this size, the most accurate
configuration is a 1,024 x 6-bit branch history table (i.e.,
k=6) with 16 pattern tables (each of 128 bits). Note that,
in this case, the BHT consumes 75% of the storage bud-
get, with the remainder for the pattern tables.

For further simplification, the BHT can be reduced
to a single branch history register. This global resource
simply tracks the results of the last 2 branches, regard-
less of their address. The pattern tables, however, can
still be maintained on a per-address basis (GAp) or can
be grouped by set (GAs). By eliminating the BHT, the
width of the history register () and number of pattern
tables can be increased within a fixed hardware budget.

Yeh and Patt’s Taxonomy

In their paper[4], Yeh and Patt lay out a taxonomy of
possible variations to the two-level algorithm, each as-
signed a three-letter code. The first letter indicates the
type of history register (P, S, or G). The second letter is
always “A” while the third letter represents the method
of selecting a pattern table and is lower case (p, s, or g).

The complete algorithm uses per-address history
register (P), that is, a separate history register for each
branch. Alternatively, all branches can be combined
into a single, global history register (G). An intermedi-
ate proposal, presented by Pan, So, and Rahmeh[5],
groups branches into sets, with each set having its own
history register (S).

Similarly, pattern tables can be assigned on a per-
address basis (p) or by sets of branches (s). For ultimate
simplification, a global pattern table (g) can be used.

For small implementations such as the 8-Kbit de-
sign above, the PAs method provides better results. With
a budget of 128 Kbits, however, GAs is superior. Specifi-
cally, a GAs design with an 11-bit history register and 32
pattern tables (each of 2 x 211 or 4,096 bits) delivers the
most accuracy within this storage budget([4].

The above analysis does not include the effect of
context switches. The GAs approach has an advantage
when context switches occur, because it takes fewer iter-
ations to develop reliable history information from a sin-
gle history register. This may give the global history reg-
ister an advantage in real-world designs even for smaller
implementations.

Target Addresses Must Also Be Predicted

Predicting whether the branch is taken is only half
the battle; for seamless handling of taken branches, the
processor must be able to immediately redirect the fetch
stream to the target address. This feat can be tricky,

Branch History
Table (BHT)

111010 >

011111 >
000101 >

Pattern Tables

111011 >
111111 >
000100 >
011111 >

011110 >

Figure 3. A branch history table consists of a number of entries,
each with its own history register. Each history register may map to
its own pattern table (PAp), or groups of entries may map to each
pattern table (PAs), as shown here, reducing the number of tables.

3 New Algorithm Improves Branch Prediction

Vol. 9, No. 4, March 27, 1995

© 1995 MicroDesign Resources



MICROPROCESSOR REPORT

their destination. To handle these

95%
P6  instructions, some processors use
* .
N 90% 21064A (4K7) special storage for return addresses.
2 21164 (2K*) o
£ ) When a subroutine is called,
G s NX586 (2K*)
W 21064 (2K) PPC 620 (2K) processors such as Cyrix’s M1 and
D g% 21066 (2K) R 16000 (G122 all Alpha chips save the return ad-
° + gltras’elirz:zgel’%) dress on a special stack. When the
[5) o yrix . .
g 7% PP?G o A%%O%S(g%) PA-8000 (256) subrogtme later retur.ns, this ad-
é o PPC 603 Pentium (256} dress is taken from this stack and
= ’ PROXV%BZ used to redirect the fetch stream,
X . 7. .
T 65% 4 1960 avoiding the need to wait for the re-
o MicroSparc-2 turn instruction to actually execute.
& 60% < PA-Tx00 If subroutine calls are nested more
S SuperSparc -
g age o pershar deeply than the number of entries in
@ Misr%%%%m this address stack (typically four),
40% | <" HyperSparc this method cannot provide the cor-
V800 .
SH rect target address for subroutine
Always Always BTEN  Compiler 1-bit 2-bit Two returns beyond this limit.
Not Taken Taken Directed History History Level One BTAC variation is to cache

Branch Prediction Algorithm

target instructions instead of ad-

Figure 4. As processors use more complex algorithms, branch-prediction accuracy increases.
(Number of history-table entries in parentheses.) *also uses return-address stack.

since typically the branch instruction is not fully decoded
in time. If the processor takes an extra cycle to decode
the branch and calculate the target, the instructions
fetched during that cycle must be discarded if the branch
is predicted taken.

Many processors use fetch queues to buffer instruc-
tions, hoping that a short stall can be absorbed by in-
structions already in the buffer. To achieve true zero-
cycle branches, a few processors cache predicted target
addresses. Most Pentium-class designs use a branch
target address cache (BTAC) that contains predicted tar-
get addresses. The BTAC is accessed in parallel with the
instruction fetch. If the BTAC indicates a branch, the
predicted target address is used for the next instruction
fetch, redirecting the fetch stream without penalty.

The BTAC is often combined with the BHT, form-
ing a single structure that uses a single set of tags for
both target addresses and history bits. This combination
is often called a branch target buffer (BTB).

Current BTAC sizes are typically 256 or 512 entries,
smaller than typical instruction caches, so addresses that
hit in the cache may not be present in the BTAC. If an ad-
dress misses the BTAC, the instructions at that address
may still contain a taken branch; this fact is detected
later in the pipeline, when the instructions are decoded.
Such a branch will cause a penalty of one or more cycles.
Like any cache, the BTAC can be increased in size or as-
sociativity to reduce the miss rate.

No matter how large the BTAC is, some branch tar-
gets are difficult to predict. Subroutine returns and
other register-based branches do not have a fixed target
but instead use the contents of a register to determine

dresses. AMD’s early 29K proces-
sors, as well as NexGen’s 586, have a
branch target cache (BTC) to store
the first several instructions located at various target
addresses. When a branch is encountered that hits in the
BTC, the processor begins fetching instructions from the
BTC while redirecting the main instruction cache to the
new address. Each BTC entry must hold enough in-
structions to feed the CPU until the main cache can re-
sume supplying instructions.

The BTC technique is useful when the main in-
struction cache has a latency of more than one cycle, as
in the 586, or if there is no other instruction cache, as in
the 29K. Like the 29K, some modern processors are con-
nected to a high-bandwidth memory that has a latency of
more than one cycle; sequential instructions can be eas-
ily prefetched, but taken branches are a problem. Proces-
sors such as Digital’s 21164 and Hal’s Sparc64 use a
small (4K-8K) primary instruction cache to provide sin-
gle-cycle response to branches. In these situations, a
BTC can be more effective than a standard instruction
cache if only 1K-2K of storage is available.

Alternative Designs Ease Branching

One method of avoiding branch prediction is to fol-
low both the taken and not taken paths simultaneously,
delivering 100% prediction accuracy. The only commer-
cial microprocessor to implement this strategy is Super-
Sparc, which has enough instruction-cache bandwidth to
fetch from two streams (on alternate cycles). SuperSparc
also has a relatively short pipeline, only four stages, and
can resolve pending branches before unneeded instruc-
tions are executed.

Few processors have the cache bandwidth to fetch
from multiple streams. Furthermore, most processors
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have longer pipelines, raising the possibility that a
second branch could be encountered before the current
branch is resolved. In this case, the processor would have
to speculate down four (or more) paths at once, a seem-
ingly impractical task.

Regardless of the prediction strategy, keeping the
pipeline to a minimal length improves branch perfor-
mance. If branches are resolved quickly, the percentage
of mispredictions is less important. The R10000, for ex-
ample, uses a six-stage pipeline to keep the mispredicted
branch penalty to two cycles, improving performance on
code with many branches or with branches that are dif-
ficult to predict.

In many advanced processors, however, extra pipe-
line stages are required to issue several instructions per
cycle. As clock speeds increase, some vendors are ex-
tending the pipeline to allow multicycle caches. In de-
coupled designs, branches can stall in execution queues,
further increasing the potential branch penalty. These
issues all force processor designers to seek improved
branch prediction.

P6 Implementation Remains Mysterious

Intel’s P6 uses a 12-stage pipeline with a seven-
cycle misprediction penalty, making accurate branch
prediction crucial to achieving high performance. Intel
has not specified the details of its two-level prediction
implementation other than to describe the size of the
BTB as 512 x 4 bits. The P6 also has a four-entry return-
address stack.

With only 4 bits per entry, the P6 could not imple-
ment a two-level algorithm: even with a 2-bit history
register, there are not enough bits left for the pattern ta-
bles. This description could refer to the first level in the
Yeh and Patt scheme, that is, a 512-entry BHT with
4-bit history registers (k=4). With the PAp method, the
second level would consist of 512 pattern tables, each
with 16 entries of 2 bits each.

The total storage requirement of this BHT would be
36 bits per entry, or 18 Kbits total. Since each BTB entry
also contains a 24-bit tag and a 32-bit predicted target
address, this added storage requirement would not be
onerous. With such a small & value, there is little need
for a more compact PAs design.

The total storage for this type of BTB, including the
tags and target addresses, is nearly 6 Kbytes. In addi-
tion, the two-level BHT requires significant control logic
to make predictions, further increasing the die area re-
quired. Intel notes that it could have increased the P6 in-
struction cache to 16K had it used a simpler BTB, but
the designers found that the increased performance from
more accurate branch prediction more than compen-
sated for the reduction to an 8K cache size.

For older processors, devoting 8K of cache to branch
prediction was impractical, considering that it would

have reduced the on-chip cache to zero in some designs.
But as transistor budgets continue to grow, devoting this
amount of the die to branch prediction is quite feasible.
When performance demands accurate branch predic-
tion, this large amount of logic is required.

Two-Level Prediction Is Very Accurate

Yeh and Patt found that a two-level BTB similar to
the one postulated for the P6 will correctly predict the di-
rection of about 96% of all conditional branches in the
SPECint89 suite. This figure does not include mispre-
dicted target addresses, nor does it include the effect of
context switches. The P6’s branch-target buffer and re-
turn-address stack should deliver high accuracy on tar-
get addresses as well.

Intel would not quote branch-prediction accuracy
for the P6; based on the Yeh and Patt study, we expect
that it will achieve 90% to 95% accuracy on programs
such as SPECint92 and do even better on SPECfp92.
Many real-world applications, however, are notoriously
difficult to predict with such accuracy. All processors
achieve lower accuracy on these applications, but the P6
will have a greater performance degradation than many
other processors due to its longer branch penalty.

As Figure 4 shows, the P6 has the most extensive
branch-prediction hardware of any announced micropro-
cessor and is the first to implement the two-level predic-
tion algorithm. Just as Alpha’s debut of dynamic branch
prediction foreshadowed extensive use of that algorithm
in other designs, we expect Yeh and Patt’s two-level
method to be adopted in future microprocessors, both
x86 and RISC, as vendors continue the quest for greater
performance. ¢
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