
CS 213 Introduction to Computer Systems

 Page 1 of 4

Distributed and Parallel Systems

We have discussed the abstractions and implementations that make up an individual
computer system in considerable detail, and we’ve talked about how networks enable
processes running on individual computers (hosts) to communicate. Communicating
processes are the basis of a whole new set of abstractions that try to make it easier to
program collections of hosts for greatly enhanced performance and reliability. A good
analogy is that communicating processes are the assembly language of distributed and
parallel systems.

This handout tries to summarize some of the important ideas at these higher levels. It is
by no means exhaustive. Furthermore, there are many open areas of research at these
levels. Perhaps this research will make distributed and parallel programming as easy as
programming an individual machine.

Why Distributed and Parallel Programs?
There are generally three drivers behind using multiple hosts. First, some applications
simple require more resources than are available on a single machine. For example, a
web search engine like Google gets so much traffic that there simply aren’t enough cycles
on a single machine. Spreading the work out across multiple machines (100s in the case
of Google) makes such application possible. The second driver is performance.
Throwing more hosts at a problem, a scientific study or simulation such as SETI@Home,
can get it done much faster than using a single machine. At its peak, SETI@Home
exploited hundreds of thousands of machines. The third driver is reliability. Let’s say
you have a critical service. Suppose you map it to a single host and that host has a 0.1
chance of failing in a year. If it takes a day to recover, then you have an expected
downtime of 2.4 hours every year. If you instead replicate the service over 10 hosts, the
chance of all of them failing is 0.1^10 and your expected downtime is in the microsecond
range.

Distributed and Parallel Algorithms
Although we haven’t talked much about algorithms in this course, it is important to point
out that the design of distributed or parallel algorithms is a bit different from their
sequential counterparts. Distributed algorithms are designed to accomplish their work
despite failures of hosts and network links, all without putting undo amounts of traffic on
the network. On the other hand, parallel algorithm design usually assumes that failures
are not an issue. Their design is strongly concerned with worst-case asymptotic
performance. However, unlike sequential algorithms, there are two ”big O” values of
concern. One is “work complexity” – the amount of work that is done. The other is
“depth complexity” – the longest path in the computation, or how long the algorithm
takes given an infinite number of processors. For example, a parallel quick sort is of
work complexity O(n log n), but it has depth complexity of only O(log n)!

CS 213 Introduction to Computer Systems

 Page 2 of 4

Higher-level Communication Abstractions
Socket programming is too low level for many purposes. It’s complex to set up a
communication channel, there is no help in starting remote processes, communication is
byte-stream oriented, and only communication between two individual hosts is a part of
the model. However, we can build more sophisticated communication abstractions on
top of sockets.

The simplest abstraction is that of message passing. Systems like PVM and MPI provide
support for starting remote processes and communicating simply with messages instead
of byte streams. Beyond simple host-to-host communication, these systems also
implement collective communication. What this means is that you can express a
communication pattern involving all of the hosts, and the system will optimize it. For
example, the all-to-all pattern, in which, en masse, each host sends a message to every
other host, is important in many parallel algorithms, but it is very difficult to schedule
optimally on even a simple network. By making the pattern explicit instead of writing
the message sends and receives directly, the programmer gives the message passing
system the critical information it needs to even begin to do this scheduling.

A powerful abstraction in distributed systems is the remote procedure call or RPC. In
RPC, we use a special interface definition language (IDL) compiler (also called a stub
generator) to generate wrappers (stubs) that interface a regular procedure to the RPC run-
time system. By using these wrappers and the RPC run-time, you can export any
function you write so that it can be called by any host on the network. The caller uses
another wrapper which makes it look like he’s calling your function locally. In effect, he
links with a wrapper that does the hard work of finding your function and calling it over
the network, dealing with different endianness, alignment requirements, etc. Your
wrapper does the hard work of making your function callable over the network. RPC
technology dates to the early 80s, but it is continually reinvented. The latest commercial
implementations are CORBA, Microsoft DCOM, and Java RMI. These systems are
called distributed object systems, because they extend the RPC idea to objects.
CORBA also allows you to call an object written in any language from some other
language, solving some of the linking problems that we discussed.

Distributed shared memory or DSM extends the idea of communication via shared
memory regions to the network, allowing regions to be shared between processes running
on different hosts. However, this is not as simple as it seems because networks are (still)
considerably slower than memory systems. Furthermore, if the hosts are heterogenous
(different kinds of architectures and/or OSes), a simple extension of the intra-host shared
memory model is not possible. Typically, DSM systems require that the programmer
create shared blocks of data, carefully defining the type of data in the block so that the
DSM system can translate between different kinds of hosts. Another issue is the
granularity of updates to these shared blocks and the degree of consistency that is needed
between different hosts’ views of them. We discuss these consistency model issues
further below because they apply in other distributed system contexts as well.

CS 213 Introduction to Computer Systems

 Page 3 of 4

Languages for Distributed and Parallel Computing
One of the things that makes a single computer system so eminently programmable is the
existence of programming languages that raise the level of abstraction at which one
programs considerably. Furthermore, the compiler toolchains that implement these
languages hide many details from us. Even C, which is about as primitive of a
programming language as there is, is a huge step up from assembly language
programming. Other languages, such as C++, Java, Perl, Python, Rexx, Matlab, Fortran
9X, Lisp, Scheme, and ML, raise these abstractions much further. ML programs, for
example, are mathematical objects about which a compiler can reason using logic.

Sadly, the state of the art in languages for distributed and parallel computing is much less
refined. Over the past 25+ years, massive amounts of research dollars have been spent
with little success in pursuit of automatic parallelization – producing parallel and
distributed programs by compile-time analysis of programs written in ordinary sequential
languages like Fortran. The major success story here is in automatic vectorization,
which is particular to vector machines (the registers hold vectors and the instructions
operate on vectors). While vector machine technology was originally confined to very
expensive supercomputers, it has slowly migrated to the desktop. Intel’s MMX and
IBM/Motorola’s Altivec are simple implementations of vector processing on mainstream
processors.

There has been much greater success in developing explicitly parallel programming
languages and compilers that support them. However, the target for these languages has
largely been the scientific community and the parallel algorithms community. These
languages allow the programmer to specifiy collections of objects and explicitly
operations on these collections. The compiler and run-time distribute these collections
across hosts and implement parallel operations on them as sequential operations and
message passing. In the case of High Performance Fortran (HPF) or Parallel Matlab, the
collections are arrays and the operations are operations on whole arrays, vectors, or slices
of either. Other collections are possible. For example, the Nesl language supports
arbitrary nested lists of arbitrary objects. A parallelizing compiler for one of these
languages will typically translate a high-level, explicitly parallel program down to a
sequential program the includes message passing. For example, HPF might compile to
Fortran (or C) with message passing calls to MPI.

The state of languages for distributed computing is still quite immature. One bright spot
is interface definition languages and their compilers, which form the backbone of RPC
systems. An IDL lets you define the interface of an object or function without specifying
how it is implemented. The compiler can then generate code that allows that object to be
used in many contexts, including across a network. A common example is CORBA IDL.

The Consensus Problem and Consistency Models
Many issues in distributed computing ultimately boil down to either the consensus
problem. Since we have multiple machines, we will often want to replicate an object,
perhaps having one copy of the object per machine. The consensus problem is how to
keep those copies consistent with each other. At a high level, this seems like an either-or

CS 213 Introduction to Computer Systems

 Page 4 of 4

propostion: either two replicas are the same or they are not. However, the known
approaches for forcing replicas to be exactly the same at all times in the face of
independent updates happening on the different processors are simply too slow to be used
in practice – they ameliorate the very benefits that we expect to get from having multiple
machines.

To make progress, researchers have defined different forms of consistency. One we
might refer to as “consensus consistency”. The idea here is that the replicas are
consistent if we can query some small subset of them for their values and combine their
answers to produce the “actual” value. Another family of consistency models comes
from considering how updates to a replica on one processor are perceived on another
processor. Your book described one model here, the sequential consistency model, in
the context of thread programming. The idea of sequential consistency and its family
apply at many levels of computer systems. The idea here is that the observing processor
sees the updates in precisely the order in which they were issued. For various reasons,
this model is very difficult to implement efficiently. Hence, “looser” consistency models
have been developed. For example, release consistency introduces specific updates,
often called barriers. The updates between barriers are perceived in any order, but the
barriers are totally ordered. Hence, when the observing processor sees the barrier, it
knows it has seen all the updates prior to the barrier. DSM systems such as Treadmarks
rely on even more relaxed forms of consistency in order to function.

Another approach to consistency is based effectively on barriers with respect to time
instead of with respect to updates. This is known as virtual synchrony. ISIS and
HORUS are the best known implementations.

Consensus problems occur frequently in the Internet, because many services, such as
DNS, web caches such as Akamai and Squid, and netnews, rely on caching to provide
high performance. Consensus in distributed systems is a deep, intellectually fascinating,
area of work.

