
 Cloud Computing
DB Special Topics Lecture (10/5/2012)

Kyle Hale
Maciej Swiech

Managing servers isn’t for
everyone…

•  What are some prohibitive issues? (we touched on
these last time)

•  Cost (initial/operational)

•  Setup/Software installation

•  Manageability

•  Space

•  Development

So what is cloud computing?

•  A shift in responsibility

•  Let someone else manage hardware infrastructure/
software environment/applications

•  But why “cloud”?

Cloud Service Models

The Usual Case

•  You buy/manage/build everything

Infrastructure
as a Service (IaaS)

•  What are we buying here?
•  A remote machine (not necessarily a

physical one!)

•  E.g. “I don’t want to manage my own
cluster!”

Why Virtualization?

•  (Hardware virtualization)

Why Virtualization?

•  Consolidation

•  Flexibility for user (Pick your favorite OS)

•  Flexibility for provider (live migration for load
balancing, repairs, etc.)

•  Performance (e.g. load user’s OS image on close-by
physical machine)

Platform
as a Service (PaaS)

•  What are we buying here?
•  A software/hardware framework to

build applications on

•  E.g. “I don’t want to setup MySQL/
Apache/Oracle, I just want to write my
web app!”

•  Bonus points: how is this different from
a regular hosted environment?

Software
as a Service (SaaS)

•  What are we buying here?
•  Functionality (business/personal)

•  We don’t have to build anything

•  E.g. “I don’t want to buy hardware or
install software or write code, I just
want to use it!”

•  Think, renting an application

•  Bonus points: how is this any
different from a webapp?

Some Common Properties of
SaaS Applications

•  Scales up/down based on usage

•  Subscription-based

•  Pay-per-use

•  Multi-tenancy

•  Customizable (e.g. for look-and-feel)

•  Collaboration/sharing

Benefits of SaaS

Benefits of SaaS

•  Updating applications is easier

•  Environment is (mostly) uniform -> portability

•  Less worry about having an adequate machine

•  Lower cost (for everyone)

•  Simplified deployment

Cloud Issues/Problems?

•  Weather is the least of them…

Trust

•  Users must shift more trust to the provider…

•  “Is my stuff going to disappear?”

•  “Can someone else see my stuff ?” (privacy)

Security

•  Providers must protect their infrastructure and users’
data

•  More software layers (e.g. with virtualization) !
More security concerns to manage

•  Are cloud administrators honest/vulnerable to social
engineering? (also a question of trust)

•  Can a provider segregate my data from other users?

Thin Clients

•  As we move computation to cloud, need less on
client-side

•  Modest hardware

•  Cheap

•  In the Extreme: ultra-thin/zero client. Only enough
system software (BIOS/kernel) to boot OS from the
network

•  Require network connectivity

Amazon EC2 demo…

Google Spanner

A globally distributed, temporally versioned database

Key features of Spanner
"  Externally consistent global write-transactions with

synchronous replication

"  Non-blocking reads in the past

"  Schematized, semi-relational data model

"  SQL-like query interface

"  Temporal versioning

Why make this?
"  Traditional RDBMS
�  Normalized data

�  Transactions

�  Don't scale well to 'web size'

"  NoSQL
�  Scale to size

�  No transactions

�  'Eventually consistent' data

Why make this? (cont'd)
"  People want
�  Scalability

�  Synchronously available data

�  Transaction support

Why make this? (cont'd)
"  People want
�  Scalability

�  Synchronously available data

�  Transaction support

�  > Google Spanner

Design of Spanner
"  "We believe it is better to have application programmers

deal with performance problems due to overuse of
transactions as bottlenecks arise, rather than always
coding around the lack of transactions." – Google

Spanner Design: zones
"  Spanner stores data in 'zones'

in various 'universes'

"  Zones provide
�  Physical isolation

�  Data locality

Spanner Design: spanserver
"  Transaction manager and lock

table ensure concurrency

"  Writes go through Paxos layer,
non-blocking reads can go
directly to data

"  If only one Paxos group is
involved, transaction manager
is bypassed (most
transactions)

"  Data can be 'sharded' as
necessary

Spanner Design: Data Model
"  Schematized semi-relational tables

"  SQL-like language

"  General-purpose transactions

"  Synchronous replication

"  An application can contain 1+ databases
�  Each db can contain unlimited number of schematized tables

Spanner Design: SQL

Spanner Design: TrueTime
"  Synchronicity is hard, especially across distributed data

centers

"  How do we solve this?

Spanner Design: TrueTime
"  Synchronicity is hard, especially across distributed data

centers

"  How do we solve this?

"  Atomic clocks and GPS!

Spanner Design: TrueTime
"  Using the GPS and atomic clocks, Spanner can figure out

serialization of transactions

"  If the time uncertainty grows too large, Spanner slows
down

What does this give us?
"  Transactions!

"  Consistent data!

"  Global Scalability!

"  Failure tolerance!

Drawbacks
"  No offline access

"  Average latency of ~10ms, but 100ms latencies should be
expected (especially on multi-site writes)

"  TrueTime requires special hardware (GPS + Atomic
clock)

