Matthew E. Zielinski

CS C99 Project Report

Professor Peter Dinda

03/15/2001

Objective:

The goal of the project work that I have been doing has been to implement a relational model to support the static properties of resources and software on the Grid. This model is being developed with hopes of being able to compete with the LDAP model of describing systems. The further hopes are being able to answer those questions which parallel computing researchers need to ask of computing sets.

Winter Quarter Project Goals / Accomplishments:

The following is a general outline of my tasks and accomplishments on the project for the quarter. After this list I will explain in detail the processes I followed to implement each. This list is not ordered according to temporal development or priority.

· Simplifying the system’s user interface

· Refining the data model to better represent the data represented

· Writing function to perform the tasks of time-stamping, creating guid’s, and number randomization

· Modeling in randomizing samples of hosts and switches

· Providing the capability of retrieving specific numbers of rows on host / switch queries (also reliant on a triggering system)

· Logging inserts, deletions, and updates of table rows in the “uniqueifiers” table through a comprehensive triggers system

· Discovering the query phrasing for retrieving sets of data that meet compound criteria

· Importing “real data” into the database (including both CS labs and 2 Engineering 1st labs, as well as other machines)

· Evaluating performance and breadth of questions that may be asked of the system

· “Tweaking” the database by adding indexes to improve performance improvement in certain types of questions

Simplifying the system’s user interface:

One of the big observations that I had made about this system was that in the fall quarter I had created a very clunky and unwieldy script system to handle various creations, insertions, and queries. As well, I noticed that I had not implemented scripts to handle row deletion or updating. Since both of the latter are almost as important as the former, I decided that it was time for a major revamping of the script user interface. The first major change that can be noticed is that there are now only 7 executable Perl scripts to handle what the previous 20+ scripts did and more. The following are the active scripts and their various syntaxes:

Syntax: ./add_column "<table>" "<column>" "<type>"

Syntax: ./create_database.pl

Syntax: ./general_query.pl "<# rows>" "<select>" "<from>" "<where>" "<group by>" "<order by>"

Syntax: ./insert_data.pl "<table>" "<data1>" "<data2>" "<data3>" ...

Syntax: ./delete_data.pl "<table>" "<criteria>"

Syntax: ./update_data.pl "<table>" "<update>" "<criteria>"

Syntax: ./syntax.pl
Also included are a “utils.pl” and “TRIGGERS” file. The former is the set of helper functions (which will be described in a later section) and the latter is a SQL script to create all the various triggers in the database (this will also be spoken of in detail later).

Refining the data model to better represent the data represented:

It can be said that no data model is complete until the actually enters the system, and this indeed help through with our design. After inserting host data pertaining to various Windows and ‘nix systems it was immediately clear that some remodeling to the schema would be needed in order to store the various data items we wanted kept in the system. In addition, with the “GUID” representation of rows, it was necessary to change the type definition of them in the schema. The most significant model changes were made in the various tables maintains “host” information, with hostbenchmarks, hostdata, and hostspecificbenchmarks in particular. The following is an example comparison between the previous incarnation of “hostdata” and the newly revised schema:

	Old Schema
	New Schema

	IP
	NUMBER(12)
	IP
	NUMBER(12)

	NUMPROC
	NUMBER(10)
	NUMPROC
	NUMBER(10)

	MHZ
	NUMBER(10)
	MHZ
	NUMBER(10)

	ARCH
	CHAR(16)
	PROCA
	CHAR(16)

	OS
	CHAR(16)
	PROCC
	CHAR(16)

	OSV
	NUMBER(10)
	OST
	CHAR(16)

	MEM
	NUMBER(10)
	OSD
	CHAR(16)

	VMEM
	NUMBER(10)
	OSV
	NUMBER(10)

	DASD
	NUMBER(10)
	OSK
	CHAR(16)

	LOC
	VARCHAR2(256)
	MEM
	NUMBER(10)

	USR
	VARCHAR2(256)
	VMEM
	NUMBER(10)

	ID
	NUMBER(12)
	DASD
	NUMBER(10)

	
	
	LOC
	VARCHAR2(256)

	
	
	USR
	VARCHAR2(256)

	
	
	ID
	VARCHAR(255)

The changes can be described as the following:

ARCH ->

PROCA (Processor Architecture i.e. x86, MIPS, RISC, etc…) +

PROCC (Processor Core i.e. Intel Coppermine, SUN UltraSPARC, etc…)

OS ->

OST (OS Type i.e. Win32, Win16, Linux, BSD)

OSD (OS Distribution i.e. Windows, OS/2, Redhat, Debian, NetBSD)

OSV ->

OSV (OS Major Version i.e. (Redhat) 7.0, (Solaris) 8.0, (Windows) 2000, etc…) +

OSK (OS Kernel Release i.e. (Linux) 2.2.4, (Windows) 4391, (Solaris) 2.2.1-14, etc…)

In addition a “counters” table was added (which purpose will be revealed in a later section). As far as the schema goes, this is not a final design but rather another iteration along the path towards and optimal one. The “optimal schema” may never be realized since ours is a system that will gradually change as usage and information requirement change.

Writing function to perform the tasks of time stamping, creating guid’s, and number randomization:

In order to accommodate randomization, selection, and logging mechanisms for creating globally unique identifiers, pseudo-random numbers, and time stamping to microsecond precision were needed.

When I originally thought about GUIDs of course Microsoft Office and online retailers definitely came to mind, since they use GUIDs to uniquely identify clients and particular computers. However when researching this subject, I was unpleasantly surprised that no standard to creating these ID’s existed. And more appropriately, any that might have existed would not accommodate the wide range of operating systems that we would be accommodating, so I decided to just develop my own notion of a global identifier. I imagine that the formula for creating it will be refined, but for now it is merely a concatenation of the environment variable “$WINDOWID” (If this is not present then “$SSH_CLIENT” is used) and the number of microseconds in the current time unit.

For creating pseudo-random numbers, I merely took the modulus of the number of microseconds with 1000, since I wanted numbers in the range of 0 – 999.

Finally, I needed a rather precise method to timestamp. Unfortunately Oracle has the limitation of second precision, so I needed to compose a script with concatenates the results of two separate system calls. (Oddly enough I found functions to give me second precision, and ones to give me microseconds since 1970, but no function to do both. Perhaps I was just mistaken in this, but if I was a new script is implemented anyways.)

Modeling in randomizing samples of hosts and switches and providing the capability of retrieving specific numbers of rows on host / switch queries:

One of the most interesting problems in our system was the ability to select a set of a particular query non-deterministically, or at least pseudo non-deterministically. I believe that I have accomplished this though the inclusion of a “randomizing factor”, or a separate column on the hosts and switches tables which contain a number between 0 and 999. Also added was a table that stores the current number of hosts and switches. Now according to a desired number of hosts that a user would like to retrieve, a somewhat random sample is returned. This is accomplished by querying those rows, which have an “RF” within a randomly selected range that is determined at run time. The width of the range is in direct proportion to how many rows they wish to have returned and how many rows exist in total. It must be mentioned that the number of rows returned is not always the number that the user wishes, and that is due to the fact that we are using a pseudo-random number generator and as such, does not guarantee an exact even spread of numbers.

Logging inserts, deletions, and updates of table rows in the “uniqueifiers” table through a comprehensive triggers system:

In order for the uniqueifiers table to be useful, a mechanism was needed to keep the information in line with the rest of the tables. This included always holding the ids for every row in every table, monitoring insertions into table, deletions from tables, and row updates. Moreover, we wanted to make sure that each event was time stamped. There were basically three options on how to go about doing this. Firstly, it would be possible to make the user responsible for adding information to the uniqueifiers table after making inserts into other tables. This was almost immediately rejected, since it is the responsibility of the system not the user to maintain this information. The second option was to include the insert to the uniqueifiers table in the procedures for inserting, updating, or deleting a row. This method is reasonably effective, although I opted for the final option, which was to use triggers and the just mentioned mechanism. The major reason for using triggers is to guarantee that the system will always be in a consistent state, regardless of possible system failure. This is the case since both the action and the triggered action must succeed for either action to take place, guaranteeing that the system data will always be in a good condition.

Discovering the query phrasing for retrieving sets of data that meet compound criteria:

One of the important questions we wanted to model took the form of the following:

“ I want x hosts with the same operating system each with 300MB disk space and over 1.5GB of combined system memory”

This can become a rather tricky question since both singular and grouped attributes must be met, and the resulting set is on the order of (Ox). The notation for even finding sets of this criteria is rather long and messy, but accurate. The following is an example of how to ask the above question through our query script. (x = 3 in this query)

./general_query.pl “-1” “A.ip, A.dasd, A.mem, B.ip, B.dasd, B.mem, C.ip, C.dasd, C.mem, A.mem+B.mem+C.mem” “hosts A, hosts B, hosts C” “A.ip <> B.ip and A.ip <> C.ip and B.ip <> C.ip and A.dasd >= 300 and B.dasd >= 300 and C.dasd >= 300 and A.os = B.os and A.os = C.os and B.os = C.os and A.osd = B.osd and A.osd = C.osd and B.osd = C.osd and A.osv = B.osv and A.osv = C.osv and B.osv = C.osv and A.mem+B.mem+C.mem >= 1436”

Importing “real data” into the database:

Having acquired the information from the CS tlab, sunlab, CivE lab, and ChemE lab as well as various personal and work machines, live data was inserted into the database so that real questions could be asked and the answers of those questions could be evaluated. As detailed information about machines is discovered, they are entered.

Evaluating performance and breadth of questions that may be asked of the system, and “tweaking” the database by adding indexes to improve performance improvement in certain types of questions:

Since real data is available, and once more data becomes available it will be necessary to have end users (i.e. researchers) actually ask the kind of questions that are important to them in order to find out exactly how versatile the database is and how those queries perform. When unacceptable performances are found the first step should then be to “tweak” the tables, or add indexes to the tables, which would increase query performance. In the case when tweaking is not sufficient, it will be necessary to re-evaluate the design of the database to see if a restructuring will benefit system performance or if the questions need to be asked in a different way.

Next Steps:

· Acquiring more data to populate each table

· Refining the scripting system to make questions easier to ask

· Modifying the query script and schema to support random and limited rows when asking compound criteria set questions

· Gathering more questions from researchers to see what can be asked

File List:

-rw-r--r-- 1 jaguar users 11461 Mar 15 18:00 TRIGGERS

-rwxr-xr-x 1 jaguar users 297 Mar 15 14:27 add_column.pl

drwxr-xr-x 2 jaguar users 4096 Mar 15 11:30 archive

-rwxr-xr-x 1 jaguar users 8163 Mar 15 18:06 create_database.pl

-rwxr-xr-x 1 jaguar users 685 Mar 15 18:09 delete_data.pl

-rwxr-xr-x 1 jaguar users 1603 Mar 15 18:35 general_query.pl

-rwxr-xr-x 1 jaguar users 10902 Mar 15 16:05 insert_data.pl

-rwxr-xr-x 1 jaguar users 489 Mar 15 20:52 syntax.pl

-rwxr-xr-x 1 jaguar users 745 Mar 15 18:24 update_data.pl

-rw-r--r-- 1 jaguar users 1604 Mar 15 16:57 utils.pl

