RPS System: A Graphical User Interface

Quarter 2 Project Report

Written By: Brandon O’Bryant

CS 399

Independent Project – RPS System GUI

Professor: Peter Dinda

3/13/01

Abstract

By the end of last quarter a simple graphing component was created. This component generated random data and displayed a standard and a prediction line with error bars. The next step for the component was to receive data from an external source.

This quarter development on the graphical user interface application and refinement of the component were the primary objectives. The application code has been completely separated from the graph component. The application is able to create a new connection by creating an instance of the line graph using inputs from the user. Other than this, however, it contains minimal functionality. The line graph component has gained a great deal of functionality. This includes connecting to the existing system (via the Java Native Interface), aesthetic improvements, and a more versatile interface.

Goals

There were three goals for this quarter. The primary technical goal was to connect my program to the existing system. This needed to be done with a combination of Java and C++ via the Java Native Interface (JNI). The secondary technical goal was to improve the graph component and begin work on the actual application. I sought to create a basic framework from which future development could be based. The third goal for the quarter was the expansion of my own skills. I wanted to improve my understanding of JNI and acquire more experience developing graphical aspects in Java in order to further improve my programming skills and experience.

Accomplishments

The goals for the quarter have been achieved. The technical goals were challenging at times; however, such difficulties contributed to the achievement of my personal goal.

Through most of this quarter and the previous quarter, all development was occurring in a single file called LineGraphApp.java. It became apparent that the program was becoming quite convoluted. So the line graph component and the application are now completely separated into two files: LineGraphApp.java and LineGraph.java.

LineGraphApp is basically a simple application framework with basic functionality. Current development is limited to a single menu with a couple options. The first option is to 'Create a Connection'. When selected, this opens a window that requests connection information (see Figure 1 below).

Figure 1: The New Connection Window in the LineGraphApp application.

[image: image1.jpg][=[ofx]

New Connection

Create New Connection

Host:

Port:

Protocol:

Connection Type:

frep

client

Create

[-[Ofx]

Upon pressing the Create button the application will create an instance of the LineGraph component and connect to the appropriate system (see figure 2 below). There is also an Exit button in the menu that will close the application smoothly.

Figure 2: A Line Graph component running in the application.

[image: image2.jpg][=[ofx]

client:tcp:skysaw:5151

[-[ofx]

LineGraph.java is now a stand-alone graphing component. One set of interfaces it contains is the ability to connect to the RPS system via JNI functions that call LoadBufferClient and PredBufferClient. These are used by simply passing the program one or two arguments in the LineGraph constructor - two to get prediction readings as well. The arguments are the paths to the target machine(s). A window will be generated, the connection will be made, and the graph will be displayed. The LineGraph can also be run from the command line. For example, simply entering “java LineGraph client:tcp:skysaw:5151” will bring up a single window displaying the LineGraph. A second path can be added that would represent the path from which prediction information can be acquired. If other programs wish to use the graphing component in the future the code will need to be adjusted accordingly. For this reason, it is coded in a generic fashion so this option is quite feasible. A final improvement in the LineGraph is a small control window below the graph that displays the number of points and minimum and maximum on the y-axis.

What I learned

In the process of writing the JNI code for the interface between the programs and improving the LineGraph component I learned a great deal. The JNI code writing process is not complex, however using some of the functions is. As the primary goal this rightfully took more than half of the quarter. When I realized the LineGraphApp needed to have the LineGraph extracted into its own file I began to learn a lot about structuring programs and Java programming. The two easily could have remained merged together, which would have very likely caused the failure of any future extensions or improvements. Fortunately, it took relatively minor alterations to separate the programs and give them their own interfaces. The work performed on the LineGraphApp gave me a taste of graphical interface programming. Overall, I am pleased with the experience gained.

Next Steps

Further development can occur in both the LineGraph and the LineGraphApp. The following are specific improvements that may be taken as immediate next steps.

In the LineGraph the control panel that is currently displaying information should become interactive. The user should be able to change the number of points, which would consequently change the display. Currently, the y-axis auto scales the maximum to the next multiple of 5 above the maximum value to be displayed. Setting the axes manually should be an option as well.

The LineGraphApp application requires much development. Depending on future development, the file entitled LineGraphApp may need to change to something more generic (specifically, the “Line” part is rather confining). A minor flaw is when the Create button in the Create window is pressed, a new window spawns but the Create window doesn’t close. Also, closing the spawned graph closes the application. Currently, the application can only connect for load measurements, not predictions. This functionality should be added in the New Connection window. A final notable problem is that the new connection creation process does not handle failure in establishing the connection.

In conclusion, much progress has occurred and there is certainly more to be done. The LineGraph component has complete basic functionality. The framework is present in LineGraphApp from which the application may be developed into a more dynamic and complete program with more features and the ability to use more graph types.

PAGE
6

