C99 Report

Budyanto Himawan

03/13/2001

My project is to implement IP routing and packet fragmentation and reassembly into the ip_module of the minet package. I’ve only worked on the IP routing part of the project this quarter.

The rules for routing IP packets are described in detail in RFC 1180. In essence IP routing happens as follows:

1. The destination MAC address must be one of the MAC addresses used by the router.

2. ip_module receives the packet and reads the 32-bit destination address found within the packet header.

3. If the destination IP address is destined for this router, further routing is not necessary and this packet is processed as if by an end system.

4. If the packet is destined for a host on a directly connected IP network, IP matches the 32-bit destination address with the appropriate physical address in the ARP table. IP then hands the packet to the appropriate lower level protocol module for transmission directly to the destination node.

5. If the packet is destined for a host on a remote IP network, IP uses the routing table to determine which router leads to that network segment. Each entry in the routing table contains a destination address - in the form an IP network address (optionally, with the subnet for the local IP address) or IP host address (32-bit: net ID and host ID) - and the IP address of the next hop router. If IP matches the destination address in the table with the destination contained in the packet, the packet is handed to the appropriate lower level protocol module for transmission to that next hop.

6. If the packet has no entry for its IP address in the routing table, the packet is routed to the default router (if one is defined or learned). Default routers are used to route packets whose destination address is not found in the routing table. This router is assumed to know the location of the packet’s destination. 

I have created 2 data structures, one for the routing table and one for the interface. Both of these are linked list structures.

Each routing table entry has the following attributes: Destination Network Address, Gateway address, Genmask (the netmask for the destination net), Flags (to indicate whether route is up or down, etc.), Metric (distance to the targets in hops), Ref (number of references to this route), Use(count of lookups for this route), and the interface to which packets to this route will be sent.

I’ve also written codes to manipulate the route table.

1. Load route table from a file (assume the file is provided)

2. Add a route into the route table

3. Delete a route from the route table

4. Print contents of route table

5. Given a destination address, match it with an entry in the route table

The first 4 functions are straight forward manipulations of doubly linked lists. For the 5th function (the matching function), the longest matching rule is used. That is the network address that best match the given destination address will be chosen. This is how I’ve implemented it; Count the number of dots in the network address up to which the addresses still match. As soon as a mismatch occurs, stop. So the route where the network address has the most number of matching dots will be the chosen route.

The interface list will contain a list of interfaces to which the packets can be sent. This is for machines with more than one network interface cards. For machines with just one interface card, this is redundant as all packets will always go into the network from the same interface card.

Each interface in the list has the following attributes: Its name; whether it’s up or down, its IP address, its Ethernet address, and which FIFOS is used to talk to it. This list has similar functions to the route table except that the matching is much simpler. The matching can just be done using the interface name. So it’s only a matter of a match or no match. 

Files where I have my code in:

route.h

route.cc

ip_module.cc

Note:

I know this is not much work. Mainly because I have to take 5 classes this quarter. I’ll definitely spend more time on this next quarter. I’m only taking 3 classes (including this project) next quarter. I’ll start on the ip fragmentation and finish up the loose ends on the routing.

