Mixing Microscopic Traffic Flow Analysis with Mesoscopic Cell Transmission Models

Final Report
by

Curtis Barrett

Thursday, December 7, 2000

for

Professor Peter Dinda

Computer Science 399

Independent Project

I had two main goals for this project. First, I planned to learn a good deal about traffic simulation models, covering both the theory supporting them and the mathematics implementing them. Second, I would code an extension to an existing traffic simulator, allowing two different types of simulators to operate simultaneously on a traffic network. I succeeded in both.

Outline

I. What I Learned

a. Mesoscopic simulation.

b. Microscopic simulation.

c. Familiarization with code base.

II. What I Did

a. Bridged microscopic and mesoscopic simulation.

b. Implemented microscopic intersection simulation.

c. Working with RouteSim

d. Output

III. Results

a. Verification of microsimulation against NETSIM/CORSIM.

b. Verification of mixed simulation against NETSIM/CORSIM.

IV. Conclusion

V. Terminology

What I Learned

A large part of this project involved actually learning the basics of traffic simulation. I spent weeks reading about microscopic simulation and mesoscopic simulation, which gave me a good grounding in the subject.

The basics of Microscopic simulation were developed during the middle of this century, and haven’t changed much since then. The microsimulation model used in RouteSim, and in nearly all other microscopic simulators is called car-following. Car-following operates under the premise that the driver of each vehicle adjusts their acceleration based on the difference in speeds between their vehicle and the one ahead of them. Many variations on this exist, adding factors such as spacing, reaction time, desired speed, etc. The actual set of calculations used in the RouteSim microsimulator is:

[image: image1.wmf](

)

(

)

(

)

(

)

reaction

new

old

old

new

reaction

new

old

old

new

old

leader

old

leader

old

new

t

x

x

x

x

t

x

x

x

x

x

x

x

x

x

x

×

+

×

+

=

×

+

×

+

=

-

-

×

×

=

&

&

&

&

&

&

&

&

&

&

&

&

&

5

.

0

5

.

0

5

The acceleration calculation also considers the spacing between the current vehicle and the leading vehicle, in addition to factoring in the velocity of the vehicle during the previous time step. The new velocity and location are integrated from their previous values, weighted by the reaction time of the driver. The above equations were developed in research done by a graduate student in the Civil Engineering department.

Mesoscopic simulation is a hybrid of macroscopic and microscopic simulation, the primary model of which is called cell-transmission. Not even a decade old, cell transmission treats traffic in a very different way. Links are broken into a number of cells, each cell having a fixed capacity. Vehicles move from cell to cell through the traffic network, but only when the following cell has room to accept the vehicle. Mesoscopic simulation with infinitely small cells is mathematically equivalent to microsimulation, so a minimal amount of error is introduced during a mesoscopic simulation with a reasonable cell size. The mesoscopic simulation code in RouteSim was developed as a research project done by a graduate student in the Civil Engineering department.

RouteSim is the actual simulator I have been working with. It is designed to be as modular as possible, now even more so with the addition of my code. It does a number of clever things. Traffic network data is stored in a relational database. Simulation objects provide the simulator with a method that tells the data loader what data is needed and a method to generate the object given that data. It also permits heterogeneous time intervals. Microscopic simulations generally run with a one second time interval or less. Mesoscopic simulations generally run with a five or six second time interval. RouteSim was originally developed by a graduate student with the Civil Engineering department.

What I Did

The first coding task of this project was to write a microscopic intersection simulator. To do this, however, I had to rewrite parts of the various link simulators. The existing microscopic and mesoscopic link simulators did little to provide easy access to the vehicles traveling on them. Each one expected to shuffle cars around the network by itself, which limits what can really be done with them. I developed a small set of methods that each link provides to make the different types of links interchangeable:

bool hasFreeSpace(VEHICLE *vehicle, int lane);

bool injectVehicle(VEHICLE *vehicle, int lane);

bool hasVehicle(VEHICLE **vehicle, int lane);

bool extractVehicle(VEHICLE **vehicle, int lane);

They act exactly as their names imply. Calling hasFreeSpace on a link returns true if enough free space for the given vehicle exists in the given lane at the beginning
 of the link. hasVehicle returns true if a vehicle is waiting at the end of a link in the given lane. The vehicle in that lane nearest the end of the link is returned via the double-pointer to the vehicle class passed to the method. injectVehicle inserts the given vehicle into the given lane of a link, provided room is available. extractVehicle removes a vehicle from the given lane, provided a vehicle in that lane is waiting at the end of the link. Giving a lane number of –1 to any of these methods is the equivalent of specifying any lane. Implementing these on both the microscopic and mesoscopic link simulators allowed them to be used interchangeably in simulation.

The microscopic intersection simulator was implemented on top of the generic intersection class, so it would be interchangeable with a mesoscopic intersection (which effectively just holds vehicles for a while, then moves them on). The major challenge here was generating the movements, phasing, and turning threats necessary to simulate the intersection. VISTA currently doesn’t have all the capabilities needed to fully define signal timings and movements, so these generators were necessary. This functionality can also be useful for traffic networks where phasing and signal timings are unavailable.

My code first looks at the angles of all origin and destination links at an intersection. If the angle between an origin and destination link is near 90 degrees (give or take some error), it is considered a right turn. Angles near 180 degrees are a through movement, and angles near 270 degrees are a left turn. Angles near 0 degrees are considered a U-turn, but are ignored since there is relatively little reason to simulate them
. The set of movements generated have the following characteristics:

· Through movements exist for each of the lanes opposite an approach.

· The leftmost lane of an approach will always have a left-turning movement, provided that a destination for such a movement exists.

· The rightmost lane of an approach will always have a right-turning movement, provided that a destination for such a movement exists.

· Through movements are aligned to the right of the approach, so any lanes without through movements are left-turning movements.

Developing the phasing requires looking again at the angles of the generated movements. The phase generator assumes a pre-timed, single-ring, two-phase, four-way intersection. It searches for a right turn movement, and using the origin and destination angles of that movement, groups all the movements into either of the two phases. By default, intersections are given a 90 second cycle time, with 41 seconds of green time per phase and 4 second yellow intervals.

The trickiest part, though, is determining which movements threaten which. The threat generator looks at each pair of movements, adds the arc between their origin and destination angles, and considers them to be a threat if that sum is in the neighborhood of 90 or 270 degrees. A 90-degree sum results from a right turn into oncoming traffic. A 270-degree sum represents a left turn across oncoming traffic. The threatening link is then considered to be the one that has an arc of around 180 degrees, a through movement. Movements with the same origin link are never considered to threaten each other.

Once all this has been done, the microscopic intersection can begin to simulate. It keeps track of the current offset in the timing plan, pulling vehicles into movements from the currently is green phase and shuffling them off onto links
. In the old RouteSim architecture, all the node and link simulators had a common method, GetVehicles. These methods would check their predecessors for any vehicles that needed to move into themselves. This had drawbacks, however. Links had to know too much about the structure of an intersection to get vehicles, and intersections too much about the links. Now all the shuffling is handled by the intersections, and the links act like a black box, taking and giving vehicles, leaving the giver and taker oblivious to what really happens in-between. The movements through the intersection are handled by miniature microscopic links. Vehicles are injected and extracted, as they would be on any normal link. A microscopic link is excessive for a single-lane movement, however, and a future task would be to develop a scaled-down version just for movements. This would likely save memory and cycles.

Finding gaps to move threatened vehicles (left turn across oncoming traffic, right turn on red) was made easier by using the hasVehicle method. A threatened movement checks to see if the threatening link has a vehicle, getting the nearest vehicle to the intersection. Looking at the location and speed of this vehicle, the threatened vehicle can judge whether or not to make the movement.

Working within the existing RouteSim codebase was an arduous task. Most of the code is undocumented, variable and function names are poorly chosen, and seemingly random indention makes the code difficult to follow. Though the automated object generation sounds convenient and easy, it’s also very finicky and prone to seg-faulting on the smallest error. This is unavoidable, however. Changing this part of the code would require rewriting a large chunk of the RouteSim, and wasn’t practical for this project.

Many parts of the code used arrays to implement pseudo-lists, and the insertion and removal code for these was implemented in each place it was used. I replaced some of these with STL lists and vectors where the impact on the code was minimal. Other custom-written list and queue structures are used throughout the simulator, most of which are too deeply ingrained to consider changing without altering and possibly breaking large pieces of the program. The microscopic link stores vehicles in a quadruply-linked list, having forward and backward pointers for vehicles in the same lane, as well as forward and backward pointers for the overall order of vehicles on the link. This is a good idea, but the pointers are named Next, Prev, After and Last, none of which give a good indication of what they really mean. The code to perform insertions and removals on this behemoth was also buggy and needed some work.

The microscopic link simulator also had a number of problems. First and foremost, it wasn’t actually working. After adding the necessary hooks into the data loader, it still had a number of problems. The actual car-following model didn’t account for a number of important factors. Vehicles slowed down at the end of a link, even if the signal was green for their movements. I corrected this by adding a method isGreen to intersections. Calling this method with a link returns true if vehicles from that link have a green light at the intersection. Vehicles now check this to see whether or not slowing down at an intersection is necessary.

Vehicles wouldn’t stop behind other vehicles at the end of a link – they would all pile up at the same location. Vehicles can’t occupy the same physical space in reality, so it is best that they don’t do that in simulation either. Now extra checks against vehicle lengths are added to keep a vehicle from passing through the bumper of the vehicle ahead of it.

The lane-changing algorithm was also flawed. It had vehicles changing lanes on every time step, as well as a number of bugs in the code that maintained the list of vehicles on the link. Lane changes were being activated based on desired speed and the speed limit, which weren’t necessarily the same. Also, the lead vehicle on a link would attempt to change lanes when there was no need to do so. Vehicles only change lanes to make a turn or pass slower-moving vehicles. These problems were remedied with more rigorous checks in the speed calculation and lane-change activator.

RouteSim’s existing data reporting methods were such a mess that, for the purposes of this project, I didn’t use them. Instead, I have vehicles record their actual starting time, travel time and delay time as they move through the network. When they exit the network, they dump these to the console, which I can log and grep to a secondary file for further analysis. The starting time is the time when the vehicle actually enters the network, as opposed to when it was supposed to enter the network. The path information from the other simulator also provides starting times for vehicles, but if a link has already filled up, vehicles trying to enter will have to wait. Travel time is simply the amount of time between when the vehicle enters and exits the network. Delay is any time spent not moving, such as at a red light. Averaging these numbers gives a fair idea of how the network is performing.

Results

NETSIM/CORSIM is a microsimulation package that has been in development since the mid-sixties. It has soaked up millions upon millions in government funding, but the end result is a simulator that does a very good job of modeling real traffic flow. The simulator modelers have spent years and years calibrating the simulator with real data, tweaking equations and such to create a very rigorous tool. Unfortunately, the software is prone to crashing, loaded with bugs, and was just recently abandoned by the developer. Most new microsimulators verify results against NETSIM because its simulation model is so well regarded. This is also far easier than collecting accurate real data and performing the verification oneself.

The obvious choice for me was to build a network in both VISTA and NETSIM, and compare the results. I decided to simulate the section of Sheridan Road from the south end of Northwestern campus up to Central Avenue. This section is approximately one mile in length, has five major intersections, and services approximately one thousand vehicles per hour during the afternoon rush hour (the heaviest traffic of the day). I obtained these figures from analyses of the roadway done in past transportation classes. The resulting network has thirteen nodes and twenty-four links.

I used this network to verify my microsimulation code. I set up all the links and nodes to be simulated as microscopic in RouteSim and ran it through. After running NETSIM on the same network, I got fairly comparable results. RouteSim output an average travel time of 292 seconds, NETSIM outputting 335 seconds. The delay times were quite divergent, however. My simulation produced average delays of a mere 160 seconds, whereas NETSIM predicts 232 seconds. I think the differentiating factor here is the number of vehicles that moved through the network during each simulation. NETSIM generates vehicles from input volumes and turning percentages as the simulation runs. RouteSim vehicles are pre-generated from vehicle counts moving between intersections in the network. NETSIM moved almost a thousand vehicles through the network, RouteSim only moving three hundred of the seven hundred scheduled. Besides being difficult to create compatible data with these two different styles of vehicle generation, I think RouteSim still has a bug or two that delays vehicles from entering the network when they are supposed to. Another possibility is that the vehicle generation program used with RouteSim may be buggy. The simulation run time for RouteSim was less than two seconds, 47 seconds for NETSIM.

I then moved on to verify mixed simulation. I took the same network and set the segment of Sheridan Road between the Central Street and Chicago Avenue intersections to be mesoscopic, with microscopic intersections. The resulting average travel time was 132 seconds. This is much too low, indicating that the mesoscopic simulator moves vehicles too quickly. However, over five hundred of the seven hundred vehicles made it through the network for this run. Further work will need to be done on the mesoscopic simulator before it produces decent results.

The final test was to run the mixed simulator on a very large network. Mesoscopic simulators exist to provide accurate simulation of large traffic networks. For this purpose, I used a data set representing Columbus, Ohio. This network has nearly seven thousand links and just over five thousand nodes. I chose a small section of downtown Columbus, just off of an interstate. I set the nodes and links of four city blocks to be simulated microscopically. Over eighty-nine thousand vehicles were scheduled for simulation, several hundred of which move through the microscopic links and nodes I had set. The simulation took 231 seconds and approximately 260 megs of memory towards the end. I believe there are some memory leaks that eat up memory as the simulation runs. Thirty-eight thousand vehicles exited the network by the end of the simulation. Unfortunately, I did not have time to build a program to convert RouteSim data to NETSIM data, so I cannot verify the results of this simulation. In fact, I’m not sure that NETSIM can even handle a network that large.

Conclusion

I would say I succeeded in writing a microscopic simulator, as well as in mixing said simulator with a mesoscopic simulator. The end result is an extensible simulation architecture that can be easily improved in the future. I was somewhat disappointed with the mixed-simulation results, but those can certainly be improved in the future. This has definitely been a good mental exercise as well as a good coding exercise. Developing the intersection simulator required a fair amount of thinking and experimentation. Working within the original RouteSim code was a coding challenge unlike most I have faced – tracing through the execution of the code until I figured out what was happening and where took quite some time.

Terminology

I decided to write up a short list of terms used in this paper, just for the sake of clarity.

Approach
An approach is an origin link for an intersection.

Cycle Time
The total length of a timing plan – all the green, yellow and red time summed.

Destination
This term has a triple meaning. The destination of a link is the intersection where traffic arrives at the end of the link. The destination of a vehicle is the last intersection it moves to during simulation. A destination link of an intersection is a link that vehicles move into from the intersection.

Movement
A movement is a connection between an approach and a destination link.

Origin
This term also has a triple meaning. The origin of a link is the intersection where traffic enters a link. The origin of a vehicle is the first intersection it moves into during simulation. An origin link of an intersection is a link that vehicles move from into the intersection.

Phasing
Phasing refers to the movements that are allowed during each step of the timing plan. One phase may allow the north and southbound approaches to move traffic, the next phase may allow the east and westbound approaches to move traffic.

Pre-Timed
A pre-timed timing plan does not change with traffic conditions.

Single-Ring
This refers to a timing plan that immediately restarts as soon as it ends.

Timing Plan
The timing plan refers to the amount of green, yellow and red time per phase.

� For sake of consistency, vehicles travel from the beginning to the end of a link. Ambiguities of this type were all too common in the original RouteSim code.

� U-turns are essentially a random event. They aren’t intended to be regular movements through which traffic flows.

� Vehicles paths are generated by another simulator that determines shortest paths based on travel times through the network.

PAGE
9

_1037641513.unknown

