
Symbolizing Quantity 
 

Praveen K. Paritosh (paritosh@cs.northwestern.edu) 
Qualitative Reasoning Group, Department of Computer Science,  

Northwestern University, 1890 Maple Ave, 
Evanston, IL 60201 USA 

 
 

Abstract 

Quantities are ubiquitous and an important part of our 
understanding about the world – we talk of engine 
horsepower, size, mileage, price of cars; GDP, population, 
area of countries; wingspan, weight, surface area of birds, and 
so on. In this paper, we present cognitively plausible symbolic 
representations of quantity and principles for generating those 
representations. Bringing together evidence in linguistics and 
psychology, we argue that our representations must make two 
kinds of distinctions – dimensional, those that denote changes 
of quantity, e.g., large and small; and structural, those that 
denote changes of quality, e.g. boiling point and poverty line. 
We present results of a pilot experiment that suggests that 
there is a significant agreement between people about the 
dimensional distinctions. We then describe a computational 
model CARVE, which is a system that learns to make 
dimensional and structural distinctions on quantities by being 
exposed to examples.   

1 Introduction 
 
Our knowledge about quantities is of various kinds – we 
understand that there are Expensive and Cheap things, 
that Canada is larger (in area) than the USA, that 
basketball players are usually tall, that the boiling 
point of water is 100 degrees Celsius. A key part 
of such knowledge seems to be a symbolization of the space 
of values that a quantity can take. By symbolization, we 
mean identifying and naming intervals and points in the 
space of values of a quantity. Some examples include tall 
and short for the quantity of height of people; poverty 
line, lower class, middle class and upper 
class for income of people; freezing point and 
boiling point for the temperature of water.  

These symbolizations and their mapping onto 
quantitative values seem to be determined by a mixture of 
personal experience (e.g., what I consider to be spicy in 
regards to food), society (e.g., middle class), science (e.g., 
phase transitions). Some are task-specific – one makes more 
distinctions than freezing and boiling for bath water. 
Furthermore, some of these symbolizations have been said 
to be vague [Varzi, 2003], in the sense that it is not possible 
to tell exactly at what value of height one becomes tall, and 
is not tall if any less than that. Given these concerns, finding 
systematic principles behind such symbolizations seems to 
be a daunting task, and has not been tackled head-on in 
cognitive science. That said, there is a vast literature that 
bears on these issues. In this paper, we address the 

following two fundamental questions about people’s 
knowledge of quantities –   

1. Representational: What do our representations of 
quantity look like? Or, what representational 
machinery is needed to make the distinctions that we 
do? 

2. Computational: How are these representations built 
with experience?  

Large scale knowledge representation efforts like Cyc 
[Lenat and Guha, 1989] refer to quantities either purely 
numerically, or using ad hoc representations. Existing 
computational models of retrieval and similarity cannot use 
numerical representations [Falkenhainer et al, 1989; 
Holyoak and Thagard, 1989; Hummel and Holyoak, 1997; 
Goldstone and Rogosky, 2002], leading to quantitative 
information being ignored in computation of similarity. 
There are models in case based reasoning [Leake, 1996] that 
use numeric information, but they employ ad hoc similarity 
metrics that are not psychologically grounded. A major 
motivation of this work is to generate cognitively plausible 
symbolic representations of quantity that will enhance 
computational models of similarity, retrieval and 
generalization. 

The rest of the paper proceeds as follows: We next 
present relevant research from Linguistics, Psychology, 
Qualitative Reasoning, and models of similarity and 
retrieval, which provide both background and motivation. 
Section 3 reports results of a pilot experiment measuring 
just how vague our notion of large, medium and small is. 
Section 4 proposes an answer to the representational 
question above. Section 5 describes CARVE, a 
computational model for building such representations. We 
conclude with future work in section 6. 

2 Background and Motivation 

2.1 Linguistics 
In language, one of the ways these symbolizations get 
represented is by relative adjectives like large and tall. 
Relative adjectives are different from absolute adjectives 
like rectangular, red and married in the sense that 
(1) they can imply varying degrees of the property in 
question, as opposed to all-or-none for the absolute 
adjectives, and (2) their meaning varies with context, e.g., 
tall means different things in context of men and 
buildings.  

These adjectives have been variously called degree, 
relative, gradable or dimensional adjectives [Bierwisch 



1987]. Here we will stick to the term dimensional 
adjectives, emphasizing our focus on those that denote 
quantity. It has been proposed that dimensional adjectives 
denote measure functions that maps from objects to quantity 
values/ intervals [Kennedy, 2003]. It has long been 
recognized by linguists that dimensional adjectives convey 
an implicit reference to a norm or a standard associated with 
the modified noun [Sapir, 1944]. This implies two steps in 
interpreting a phrase like “a large x” where x can be a 
country/ insect/ etc.: (1) x establishes a comparison class. A 
comparison class is a set of objects that are in someway 
similar to x. For instance, in some cases, this comparison 
class might be the immediate superordinate of the subject 
[Bierwisch, 1971]. How to obtain the comparison class is an 
open question. Staab and Hahn (1998) propose a 
computational model that uses knowledge about correlations 
to determine comparison classes on the fly. (2) Once the 
comparison class has been found, a standard of comparison 
is computed for the class. It is usually believed that this is 
the norm value of the property for the comparison class, but 
Kennedy (2003) observes that it can also be the minimum or 
maximum (e.g., full and open).  

The norm in step 2 has not been spelled out in this 
literature. In cases where we are referring to stable 
taxonomic categories like insects and countries, it is 
believed to be some kind of central tendency. But clearly, it 
is more than a central tendency, since that would imply that 
most things in this world will be either large or small, as not 
many will be exactly equal to the norm.  

2.2 Psychology 
 

2.2.1 Context sensitivity 
Rips (1980) considers two hypotheses about how absolute 
and relative adjectives might be stored in memory – Pre-
Storage and Computational model. For absolute adjectives 
like married and pink, he accepts the pre-storage model, 
where these predicates are stored with the concept they 
apply to. But because of context dependence of relative 
adjectives like big, e.g., in, “Flamingos are big”, he argues 
against storing these predicates in memory. We might have 
a predicate pink attached to flamingo, but in order to 
decide a flamingo is larger than an eagle, we might need a 
predicate is-larger-than-an-eagle associated 
with flamingo, which then deescalates into having infinitely 
many of those like is-larger-than-turnips and so 
on. He also observes that relative adjectives don’t propagate 
in a isa hierarchy – e.g., Grasshoppers are large insects does 
not imply Grasshoppers are large animals, but if you replace 
‘large’ by ‘green’, the implication is right. He then shows 
reaction time and error rates for verifying the truth of 
statements containing relative adjectives which supports a 
different model. In his ‘computational model’ no relative 
information is stored. Attached to every predicate is a 
normal value, e.g. with insects, a normal size of quarter 
inches. An object is called large if it is bigger than this 
normal size. Once again the problem is that just storing the 

norm doesn’t tell you when the object can be classified as 
large. The representation that we propose in section 4 solves 
his concerns with pre-storage models.  
 

2.2.1 Reference Points 
The psychological reality of such special reference points on 
the scale of quantity has been shown in various domains. 
Rosch (1975) argued for the special status of such 
“cognitive reference points” by showing an asymmetry – 
namely that a non-reference stimulus is judged closer to a 
reference stimulus (e.g., the color off-red to basic-red) than 
otherwise, while such relationship between two non-
reference stimuli is symmetric. Existence of landmarks to 
organize spatial knowledge of the environment, similar 
asymmetries [Holyoak and Mah, 1984 among others]. Other 
relevant psychological studies that support the existence of 
reference points come from categorical perception [Harnad, 
1987] and sensitivity to landmarks [Cech and Shoben, 
1985]. Brown and Siegler (1993) proposed the metrics and 
mappings framework for real-world quantitative estimation. 
They make a distinction between the quantitative, or metric 
knowledge (which includes distributional properties of 
parameters), and ordinal information (mapping knowledge). 
 

2.2.2 Models of Retrieval, Similarity and Generalization 
There is converging psychological evidence for structured 
models of retrieval, similarity and generalization.  

The structure-mapping engine (SME) [Falkenhainer et 
al, 1989] is a computational model of structure-mapping 
theory [Gentner, 1983]. Given two structured propositional 
representations as inputs, the base (about which we know 
more) and a target, SME computes a mapping (or a handful 
of them). MAC/FAC  [Forbus et al, 1995] is a model of 
similarity-based retrieval, that uses a computationally cheap, 
structure-less filter before doing structural matching. It uses 
a secondary representation, the content vector, which 
summarizes the relative frequency of predicates occurring in 
the structured representation. The dot product of content 
vectors for two structured representations provide a rough 
estimate of their structural match. SEQL [Kuehne et al, 
2000] provides a framework for making generalizations 
based on computing progressive structural overlaps of 
multiple exemplars.  

One limitation of these models – and of other models of 
analogical processing (e.g., ACME [Holyoak and Thagard, 
1989, LISA [Hummel and Holyoak, 1997], ABSURDIST 
[Goldstone and Rogosky, 2002]) – is that they do not handle 
numerical properties well: 
Retrieval: Just as Red occurring in the probe might remind 
me of other red objects, a bird with wing-surface-area of 
0.272 sq.m. (that is the Great black-bucked gull, a large 
bird) should remind me of other large birds. This will not 
happen in the current model, unless we abstract the numeric 
representation of wing-surface-area to a symbol, say, 
Large.  
Similarity: A model of similarity must be sensitive to 
quantity.For example, in current matchers, two cars which 
are identical in all dimensions have the same similarity as 



two that differ in some dimensions, if other aspects of their 
representations are identical.  
Generalization: A key part of learning a new domain is 
acquiring the sense of quantity for different quantities. E.g., 
from a trip to the zoo, a kid probably has learnt something 
about sizes of animals. 
A symbolic and relational representation of the kind we 
propose here would make models of analogical processing 
more quantity-aware. 

2.3 Qualitative Reasoning 
Qualitative reasoning research seeks to understand human-
like commonsense reasoning without resorting to 
differential equations and real-valued numbers. There is a 
substantial body of research in QR that has shown that one 
can, indeed, do powerful reasoning with partial knowledge. 
Qualitative reasoning has explored many different 
representations:  status algebras (normal/abnormal); sign 
algebra (– , 0, +), which is the weakest representation that 
supports reasoning about continuity; quantity spaces, where 
we represent a quantity value by ordinal relationships with 
specially chosen points in the space; intervals and their 
fuzzy versions; order of magnitude representations; finite 
algebras, among others. While these representations are very 
promising for cognitive modeling, there has been little 
psychological work to date on this. 

3 Experiment 
 
We conducted a pilot experiment to see how much people 
agreed on what they would call large, small or medium. We 
expected agreement across subjects on their labeling. 
Furthermore, we expected to find out how people go about 
mapping these symbols to quantity values in a specific 
scenario – being presented with all the examples at once. 
And if people indeed agreed on their partitioning, then we 
expected to gain insight about where they drew the 
boundaries.  

Method 
The experiment consisted of two tasks – Size Labeling task 
and Country Naming task. In the size labeling task, subjects 
were presented with an outline political map of Africa. The 
countries were numbered from 1 through 54, and at the 
bottom of the map were 54 numbered blanks.  They were 
given the following instruction – “On the following page 
you will find a map of Africa. All the different countries are 
shown and numbered. For each country, we want you to 
think if you will call it LARGE, MEDIUM or SMALL on 
the basis of size (land area) as shown in the map. Below the 
map you will find numbered index of all the countries on 
the map. Please place your answer (LARGE/ MEDIUM/ 
SMALL) in the blank next to it. Please fill out all the 
blanks.” 

At the end of this task, they did the country naming task. 
Here they were presented another copy of the map, and were 
told to name as many of the countries as they could. The 

participants were 19 graduate students at Northwestern 
University. 

Results and Discussion 
We found significant agreement across the subjects. 
Subjects could correctly name very few countries (mean 6 
out of 54 countries, sd = 6.5). This suggests that prior 
knowledge should be irrelevant, and their judgments were 
based on examining the map.  

To see how much subjects agreed about their choices, 
we extracted the most frequent choice for each country, and 
the percentage of times that was chosen across subjects (e.g, 
for both Seychelles and Algeria this is 100%, as the most 
frequent choice was always picked, for Kenya it is 79% 
which is how often it was called medium). In figure 1 we 
show the most frequent, second most frequent and the least 
frequent choice and how often they were chosen. The most 
frequent choice was chosen an average of 81.2% of the 
times, and the second most frequent choice was chosen 
18.5%, and the least frequent 0.3% of the times. The 
difference between most frequent choice and the second 
most frequent choice is statistically significant (t(53)=12.92, 
p<0.01).  

Subjects seem to do the task in a clustering fashion. 
They would pick either small/large and start marking out the 
clearly small/large countries, then countries at the other end 
of size and then consider the cases in between. 

 
Figure 1. Agreement across subjects on their most frequent 
choice. The most frequent choice is 81.2%, significantly 
higher than the second and third chosen size labels.  

4 Representation 
 
A representation of quantity allows us to make certain 
distinctions – numbers allow us to make too many, and 
dividing the range of values into two equal sized parts 
doesn’t necessarily provide useful distinctions. 
Representations do not arise in vacuum. They are molded by 
the kinds of reasoning tasks we perform with them 
(reasoning constraints), and the things we are trying to 
represent (ecological constraints). We propose 



representations based on existing evidence and arguments 
from these constraints. 

4.1 Reasoning Constraints 
The three distinct kinds of reasoning tasks involving 
quantities are –   
1. Comparison: These involve comparing two values on an 
underlying scale of quantity, e.g., “Is John taller than 
Chris?” Our knowledge of how the quantity varies (its 
distribution), and linguistic labels like Large and Small, 
are but a compressed record of large number of such 
comparisons. The semantic congruity effect [Banks and 
Flora, 1977] is the fact that we are better and faster at 
judging the larger of two large things than the smaller of 
two large things. Part of the account from experiments 
involving adults learning novel dimension words, by Ryalls 
and Smith (2000) is the fact that in usage, we make 
statements like “X is larger than Y” more often than “Y is 
smaller than X”, if X and Y are both on the large end of the 
scale. 
2. Classification: These involve making judgments about 
whether a quantity value is equal to, less than or greater than 
a specific value, e.g., Is the water boiling?, Will this couch 
fit in the freight elevator?, etc. Usually, such classifications 
involve comparisons with interesting points (called limit 
points in QR) in the space of values for a quantity, where 
conditions on either side are qualitatively distinct. The 
metaphor of phase transitions describes many such 
interesting points, although such transitions in everyday 
domains are not as sharply and well defined as in scientific 
domains (consider poverty line versus freezing point). 
 3. Estimation: These involve inferring a numerical value 
for a particular quantity, e.g., How tall is he? What is the 
mileage of your car? This is the activity that has the 
strongest connection to quantitative scales – one can go a 
long way in accounting for the above two without resorting 
to numbers, but estimation involves mapping back to 
numbers [Subrahmanyam and Gelman, 1998]. Knowledge 
of interesting points on the scale might play an important 
role in estimation, for example in providing anchors to 
adjust from [Tversky and Kahmenan, 1974]. 

These tasks are not completely distinct – classification 
involves comparison, and estimation might be used in the 
service of classification. Two interesting aspects of our 
representations follow from these constraints: 
1. Our representations must keep track of interesting points 
on the scale of quantity, to classify, as well as to estimate.  
2. Labels like large ease making comparisons, as they 
setup implicit ordinal relationships (it is larger than most 
objects). 

4.2 Ecological Constraints 
Our representational framework must be capable of 
capturing the interesting ways in which a quantity varies in 
real-world instances of it. Below we present two different 
kinds of constraints on values a quantity can take –  

1. Distributional Constraints: Most quantities have a 
range (a minimum and a maximum) and a distribution that 
determines how often a specific value shows up. For 
example, the height of adult men might be between 4 and 10 
ft, with most being around 5-6.5ft. More than just the norm, 
we can usually talk about the low, medium, high for 
many quantities, which seems to be a qualitative summary 
of the distributional information. There is psychological 
evidence that establishes that we can and do accumulate 
distributions of quantities [refer to Malmi and Samson, 
1983; Fried and Holyoak, 1984; Kraus et al, 1993; among 
others, for more]. Given a distribution of values for a 
quantity, the next question of how we partition these 
distributions has not been raised at all.    
2. Structural Constraints: Quantities are constrained by 
what values other quantities in the system take, its 
relationship with those other quantities, via its relationships 
with them1. For instance, for all internal combustion engines 
– as the engine mass increases, the Brake Horse Power 
(BHP), Bore (diameter), Displacement (volume) increases, 
and the RPM decreases. These constraints represent the 
underlying mechanism, or causal model of the object. Limit 
points decompose values into regions where the underlying 
causal story is different (e.g., ice starting to melt, at the 
freezing point), which induces extremely important and 
interesting distinctions of quality on the space of quantity.  

These two ecological constraints point us to the two 
different kinds of information about quantities, which must 
be parts of our representations –  

1. Distributional information about how the quantity 
varies. 

2. Its role in and relationship to the underlying 
structure/mechanism, and the points at which there are 
changes in underlying structure. 

4.3 Proposed Representation 
There are two kinds of distinctions that our representation of 
quantity must make –  

1. Dimensional partitions: Symbols like Large and 
Small, which arise from distributional information 
about how that quantity varies.   

2. Structural Partitions: Symbols like Boiling 
Point and Poverty Line, that denote changes of 
quality, usually changes in the underlying causal story 
and many other aspects of the objects in concern.  

These partitions may manifest as intervals centered around a 
norm, or by boundaries demarcating transitions. Let’s look 
at dimensional partitions in more detail. Dimensional 
adjectives like large depend upon the context. Consider 
area of African countries – in our experiment, people agree 
that Algeria is large, and Swaziland is small, Kenya is 
medium sized. We represent this as follows –  
 
                                                           
1 Comic books, mythology, and fantasy, for example, have the 
freedom to relax this constraint – a character can be arbitrarily 
strong, large, small or be able to fly, even though the physical 
design of the character might not be able to support it. 



(isa Algeria  
(HighValueContextualizedFn  

Area AfricanCountries)) 
High/Medium/LowValueContextualizedFn are 
functions that take two arguments – a quantity and a context 
argument and return a collection of objects. So in the above 
example HighValueContextualizedFn denotes the 
collection of large African countries, and the isa statement 
says that Algeria is an instance of that collection. The 
LowValueContextualizedFn similarly lets us 
represent the negative end, for instance small and cheap.  

5 Computational Modeling 
 
We are developing a computational model, called CARVE, 
as an account of the generation of both dimensional and 
structural partitions. At this writing, CARVE is partially 
implemented. The input to CARVE is a set of examples 
represented as collections of facts in predicate calculus. 
Countries are an interesting domain for testing CARVE as 
there are many quantitative parameters with rich causal and 
structural relationships2. The cases for each of these 
countries were built by extracting facts about them from the 
Cyc knowledge base. Additional quantitative facts about 
attributes like population, literacy, etc., were extracted from 
the CIA Factbook knowledge base [Frank et al, 1998] and 
added to these cases. There were on average 108 facts per 
case.  

 
Figure 2. A schematic overview of how CARVE computes 
dimensional and structural partitions. 

Dimensional Partitioning 
CARVE takes as input a set of cases. For each quantity, we 
extract all the numeric values for it in our input cases. Given 
these values, the job of the dimensional partitioning step is 
to find three partitions, corresponding to Low, Medium and 
High ranges of the values that the quantity takes.  

These partitions are currently generated using a k-
means clustering algorithm. It is possible to plug in different 
heuristics that partitions the values into ranges of values. 

Heuristics based on central tendency and percentiles do not 
work for zipf like distributions which we see in many of the 
quantities (e.g., GDP, population, area) associated with 
countries. For such distributions, means and variances are 
not intuitively meaningful at all.  

 
The k-means clustering algorithm fits with what people 

did in our pilot experiment. On an average across subjects, 
the dimensional partitions computed by CARVE agreed 
with people 74% of the times (sd=27). More empirical data 
is needed to conclude what set of heuristics people use to 
make these partitions, and when they work. We believe that 
depending upon the distribution of data, people will use 
different partitioning strategies. The clustering scheme used 
is useful across different kinds of distributions and can be 
used incrementally without a priori knowledge of 
distributions. 

For each fact about the value of a quantity, we then add 
a High/Medium/LowContextualizedValueFn to 
the case depending upon which range that numeric value fell 
in. These facts are used in the next step.  

Structural partitioning 
SEQL [Skorstad et al, 1988; Kuehne et al, 2000] provides a 
framework for making generalizations based on computing 
progressive structural overlaps of multiple exemplars. The 
goal of structural partitioning is to find the structural 
clusters in the cases (for instance, groups of developing and 
underdeveloped nations) and project these clusters on to 
various quantity dimensions. The cases produced at the end 
of the dimensional partitioning step are given as input to 
SEQL. In figure 2, we see the output of SEQL as three 
generalizations S1, S2 and S3 and some leftover cases that 
did not fit any of those. Let’s consider two quantities 
Quantity1 and Quantity2. The projection of a cluster on a 
quantity is the range of values for that quantity in the 
cluster. For Quantity1, we see that the projections from all 
the three generalizations overlap. On the other hand, the 
projections of the generalization on Quantity2 are non-
overlapping. We have marked by L1 and L2 the boundaries 
for these ranges. Notice the predictive power of knowing 
that for a specific case the value of Quantity2 is less than L1. 
We not only know about the quantity value, but about the 
generalization to which the case belongs, and so can predict 
a lot of other causal properties of it. For instance, when you 
know that a country is a developing country, there are rich 
causal predictions you can make.  

(isa Algeria   Dimensional 
partitioning for 
each quantity 

(HighValueContextualizedFn 
    Area AfricanCountries) Ci . 
. 
. 

Add these facts to 
original cases Quantity 1 

Structural 
clustering 
using SEQL 

S2 Cj S1 S3 
Ci

* 

Quantity 2 

L1 L2 

The algorithm above has been implemented in CARVE. 
Unfortunately, because of the lack of rich causal/ relational 
knowledge in the cases, it does not yet find any interesting 
structural partitions. Structural partitions are a reflection of 
our deep understanding of the causal and correlational 
structure of examples. In science, phase transitions, and 
structural distinctions in socio-economic dimensions were 
not easily discovered. We hope that by adding more 
knowledge we will get better structural partitions.                                                             

2 Alas, not all of this rich structural knowledge is already 
represented in our knowledge bases.  

 



6 Conclusions and Future Work 
 
Based on cognitive and linguistic evidence, and arguments 
from reasoning and ecological constraints, we presented 
symbolic representations for quantity. We find significant 
agreement between subjects on dimensional partitions. We 
presented a computational model for automatically 
generating these representations.  

Currently all the cases are given as input to CARVE. 
One important way to extend this will be for it to 
incrementally build and update its representations. Further, 
we need to create rich structured cases with causal and 
correlational information and test CARVE.  
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