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ABSTRACT

A few representations have been used for capturing design rationale. To
understand their scope and adequacy, we need to know how to evaluate them.
In this article, we develop a framework for evaluating the expressive
adequacy of design rationale representations. This framework is built by
progressively differentiating the elements of design rationale that, when made
explicit, support an increasing number of the design tasks. Using this
framework, we present and assess DRL (Decision Representation Language),
a language for representing rationales that we believe is the most expressive
of the existing representations. We also use the framework to assess the
expressiveness of other design rationale representations and compare them to
DRL. We conclude by pointing out the need for articulating other dimensions
along which to evaluate design rationale representations.
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1. INTRODUCTION

As the articles in this issue point out, an explicit representation of design
rationales can bring many benefits. Such a representation can lead to a better
understanding of the issues involved (Conklin & Yakemovic, 1991 [this issue];
Lewis, Rieman, & Bell, 1991 {this issue]), of the design space (MacLean,
Young, Bellotti, & Moran, 1991 [this issue]), and of the principles underlying
human-computer interaction (Carroll & Rosson, 1991 [this issue]). It can also
provide a basis for learning, justification, and computational support in
design (Fischer, Lemke, McCall, & Morch, 1991 [this issue]; Lee, 1990a).
The extent to which we can actually reap these benefits, however, depends
largely on the language we use for representing design rationales. If, for
example, design rationales were represented in free text, the benefits we
obtained from it would not be different from what we already get from the
notes on paper that we take in design meetings. Also, the kinds of computa-
tional support that we can provide depends on what a representation makes
explicit and how formal the representation is. A few systems have been built
and actually used to capture design rationales or arguments (Conklin &
Begeman, 1988; Fischer, McCall, & Morch, 1989; Kunz & Rittel, 1970; Lee,
1990a, 1990b; McCall, 1987), and most of them used representations based
on the earlier studies of design activity (Kunz & Rittel, 1970) or of
argumentation (Toulmin, 1958). However, there is no systematic attempt to
Justify the choice of these representations or to discuss the rationale for using
them.

This article is motivated by the following questions: How adequate are the
existing representations? Do they allow us to represent easily what we want to
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represent? In general, how do we evaluate a language for representing design
rationales? This article attempts to answer these questions by identifying the
elements of design rationale that could be made explicit and by exploring the
consequences of making them explicit. Laying out these elements provides a
framework for placing the existing meanings of design rationale in perspec-
tive, as well as providing a framework for evaluating a representation
language for design rationales, as we hope to show.

We proceed in the following way. In the next section, we identify the tasks
that we might want to support using a design rationale representation.
Throughout the article, we use these tasks as a reference against which we
evaluate the representations that we discuss. In Section 3, we characterize
design rationale by presenting progressively richer models. We start with a
simple model of design rationale, where an artifact is associated with a body
of reasons for the choice of that artifact. We then elaborate this simple model
by incrementally differentiating and making explicit what is implicit in the
body of reasons. As we do so, we discuss what each resulting model allows us
to do. These models of design rationale provide a framework in which to
define the scope of a representation and its adequacy within its scope.! In
Section 4, we present a language called DRL for representing rationales and
use the models to evaluate DRL. In Section 5, we consider other existing
languages for representing design and explore some open problems for future
research.

2. WHAT DO WE WANT TO DO WITH DESIGN
RATIONALE?

To evaluate a representation, we need to know what tasks it is designed to
support. The tasks that a design rationale representation can or should
support can be described in many ways at different levels of abstractions. For
example, Mostow (1983) listed the following tasks: documentation, under-
standing, debugging, verification, analysis, explanation, modification, and
automation. Fischer et al. (1991 [this issue]) point out that documenting
design rationales can support maintenance and redesign of an artifact, reuse
of the design knowledge, and critical reflection during the design process.
MacLean et al. (1991 [this issue]) list two major benefits from design
rationale representation: aid to reasoning and aid to communication. The
tasks of achieving these benefits are elaborated further in terms of subtasks,

! In this article we use the terms mode! and representation in the following way. A model is a
conceptual structure, and a representation is a linguistic manifestation of a model. Because the
same structure can be described in many ways, a model can have several representations.
Therefore, when we want to discuss a structure independent of a particular way of describing it,
we use the term model. On the other hand, we use the term representation to refer to a particular
notation for describing the structure.
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such as enabling the designers to envisage the available design alternatives in
a more structured way, with the arguments for and against them.

Another way of characterizing the tasks 1s to list the questions we often need
to answer to accomplish the general tasks mentioned before in the design
process. To the extent that we want our design rationale representation to help
answer these questions, answering these questions becomes the task that the
representation should support. The following is a set of representative
questions that we gathered from our experiments with design rationale (Lee,
1991), from walking through examples (Lewis et al., 1991 [this issue]), and
from creating scenarios (Carroll & Rosson, 1990).

® What is the status of the current design?

¢ What did we discuss last week, and what do we need to do today?
¢ What are the alternative designs, and what are their pros and cons?
* What are the two most favorable alternatives so far?

¢ Sun Microsystems just released their X/NeWs server. How would the
release change our evaluations?

¢ What if we do not consider portability?
* Why is portability important anyway?
¢ What are the issues that depend on this issue?

¢ What are the unresolved issues? What are we currently doing about
them?

® What are the consequences of doing away with this part?

e How did other people deal with this problem? What can we learn
from the past design cases?

This list of questions is by no means complete, as there are many possible
paths we did not walk through and many scenarios we did not construct. We
also left out those questions that, although important, do not seem to be the
job of design rationales to answer (e.g., How can we compute the total cost
of this design?). Nevertheless, the questions in the list provide a useful
framework for assessing the expressiveness of the different representations.
When we discuss the limited or increased expressiveness of a given represen-
tation, we refer to those questions that can or cannot be answered as a result.
If our task includes answering a question that is not represented in the list,
then we can always evaluate the representations by asking whether they would
support answering the question and, if not, what additional objects, at-
tributes, or relations would have to be made explicit.
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Figure 1. Elements in computer-supported activities.
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We want to emphasize further that we are assessing only the expressiveness
of the existing representations of design rationales. That it is desirable to
answer the questions in the list does not mean that any representation for
design rationales should support answering all of these questions. Each
representation must weigh the costs and benefits involved in tradeoffs among
three general dimensions: expressiveness, human usability, and computa-
tional tractability (see Figure 1). These tradeoffs should in turn be motivated
by the tasks that are intended to be accomplished using the representation. In
short, we are not dictating what any existing representation should or should
not have. However, we do hope that the analysis presented in this article will
help designers of representations for design rationales be more conscious of
what their languages can or cannot express and why.

To be sure, we cannot separate our concern with expressiveness entirely
from other concerns such as human usability or computational tractability.
For example, if a language is meant to be used by people to capture design
rationales but is too complex for people to manage, then there is not much
point in evaluating its expressiveness. Whether any of the representations we
discuss falls into that category is an empirical question. All the languages
discussed here actually have been used by people, but that is no guarantee that
they will all succeed at their “industrial strength” use (Conklin & Yakemovic,
1991 [this issue]). Nevertheless, we believe it would be difficult to evaluate
tradeoffs among the three dimensions without calibrating individual dimen-
sions such as expressiveness (cf. Levesque & Brachman, 1985, on tradeoffs
between expressiveness and computational tractability for general knowledge
representation).
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3. MODELS OF DESIGN RATIONALE

What is design rationale? The term design rationale is currently used in at
least three different ways: a historical record of the reasons for the choice of
an artifact (Yakemovic & Conklin, 1990), a set of psychological claims
embodied by an artifact (Carroll & Rosson, 1990), and a description of the
design space (MacLean, Young, & Moran, 1989).*

Design rationale often means the historical record of the analysis that led to
the choice of the particular artifact or the feature in question. To illustrate, let
us take as an example a particular feature of the Macintosh operating system,
namely, the placement of all the window commands in the global menu bar
at the top of the screen. By a window command, we mean a command specific
to a window; for example, SAVE is a window command that saves the
contents of the window. A design rationale for this feature in the sense of
historical record would be something like:

The issue of where to put the window commands was raised by Mark
on January 20. Kevin proposed the idea of incorporating them into
the global menu bar at the top of the screen and pointed out that it
saves screen space (e.g., as opposed to putting the commands on each
window, as in the Star environment). Julie objected because it
requires a long mouse travel from the currently active window in
executing a command. But, we decided to have the global menu bar
anyway because people generally agreed that the advantage, together
with others such as more efficient implementation, outweigh the
objection.

We can provide more structure to this historical record, as we discuss in the
rest of the article. Such structure is usually designed to make explicit the
logical structure (e.g., an argument supports a proposai) and/or the historical
structure (e.g., a proposal replaces another proposal).

Another meaning of design rationale is the set of psychological claims
embodied by an artifact (Carroll & Kellogg, 1989; Carroll & Rosson, 1991
[this issue]), that is, claims that would have to be true if the artifact is to be
successful or claims about psychological consequences for the users of the
artifact. These claims are different from the historical record; the claims need
not be present in the historical record; even if they were, they would have to
be extracted from the record and formulated in a testable form. For example,

2 The representation used in Yakemovic and Conklin (1990) describes logical as well as
historical aspects of design rationale, as we discuss later. We associate their work, as well as that
of Lee (1990a) and Potts and Bruns (1988), with the historical record only because one of their
goals is to capture and document the actual process of design.
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the design rationale in this sense would be something like: “The global menu
makes the environment easier to use because it reduces screen clutter,” or
“Dimming the irrelevant items in the global menu makes it easier to learn
about the commands.”

The third meaning of design rationale is one used by MacLean et al.
(1989), namely, how a given artifact is located in the space of possible design
alternatives: What are the other possible alternatives? How are these alter-
natives related? What are the tradeoffs among them? In our Macintosh
example, the design rationale in this sense would be some description of the
logically possible alternatives for placing window commands, how they are
related, and what the tradeoffs are. It is often difficult to provide such a
description in a systematic way, but an example is found in Card, Mackinlay,
and Robertson (1990) and in Mackinlay, Card, and Robertson (1990), which
provides a vocabulary of the primitives and a set of composition operators for
describing the design space of possible input devices. This meaning of design
rationale seems different from the first meaning in its emphasis on design
rationale not being a record but a construction and from the second in its
emphasis not on a particular artifact but on the relation among possible
alternatives.

We now develop a series of progressively richer models of design rationale,
which provides a framework in which we can place the three different
meanings of design rationale. The first two meanings are discussed next. The
third meaning of design rationale, as a possibility space, is discussed shortly
after.

Design rationale in the most general sense is an explanation of why an
artifact is designed the way it is. So, in our first model of design rationale, an
artifact is associated with a body of reasons as shown in Figure 2a.

There are different kinds of reasons that we can give for an artifact. The
reasons can be historical or logical, roughly corresponding to the meanings of
design rationale, respectively, as a historical record and as a set of claims
embodied by an artifact.® The record of the process that led to the choice of
an artifact tells us one kind of reason why that artifact was chosen. The
previously shown free text example about the window commands is an
example. If we wanted a logical justification, we would have to extract it from
the record, but at least such a record tells us the historical circumstances and
sequence that led to the design and provides a basis from which to infer the
logical reasons. On the other hand, we can represent the logical reasons

® We believe that the distinction between historical and logical reasons breaks if we push it too
far because a purely historical record per se does not really give us a reason. It would give us a
reason only to the extent that we can extract some logical structure out of it. Nevertheless, we
believe that the distinction is useful for the purpose of evaluating representations because, for a
given representation, we would like to know what it makes explicit and what we have to infer
from it.



Figure 2. Progressively more differentiated models of design rationale. (a)
Model 1: An artifact is associated with a body of all the arguments relevant to the
design of the artifact. (b) Model 2: Alternatives and their relations are made
explicit, and the arguments about individual alternatives can be differentiated.
(c) Model 3: Evaluation measures used and their relations are made explicit, and
the arguments about them can be differentiated. (d) Model 4: Criteria used for
evaluation and their relations are made explicit, and the arguments about them
can be further differentiated in the argument space. (¢) Model 5: Individual
issues are made explicit, each of which contains the alternatives, evaluations, and
criteria used in discussing the issue. A part of the argument space includes the
meta-arguments about the issues and their relations.
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directly, that is, the reasons justifying the choice of an artifact no matter how
or in what order they were articulated. The set of claims embodied by an
artifact is an example because these claims would justify the design of the
artifact. These claims are logical also in the sense that the context in which
they are true has to be made explicit. For example, a claim should not say,
“The global menu is better because it leads to smaller implementation” if it
really means, “The global menu is better in the context of the Macintosh
because it leads to smaller implementation. This is important in a system like
the Macintosh, which has a small memory.” Extracting these logical reasons
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is not an easy task; once identified, however, they provide the advantages of
being testable and general.

The internal structure of these reasons can be made explicit to different
degrees. At one extreme, the reasons can be completely undifferentiated. An
example is the natural language description that we gave earlier as an example
of a historical record. If we were to make the historical relations more explicit,
we could differentiate further by making explicit these roles and relations
such as: Initiator, Second Motioner, Initiates, and Replaces. An example
that is not historical is the representation used by Carroll and Rosson (1991
(this issue]) for describing the claims embodied in an artifact. In this
representation, the claims themselves are represented in natural language, but
the claims are grouped by the questions they answer: What can I do? How
does that work? and How do I do this? We can also imagine a representation
where the logical support relations can be made more explicit by providing
such constructs as Logically Implies, Supports, Denies, Qualifies, and
Presupposes. We use the term argument space to refer what we have called a
body of reasons, because the reasons are captured either as a historical record
of the various arguments relevant for the design of the artifact or logical
arguments underlying the design.

There is much we can do with our first model of design rationale. A
representation based on this model can help us answer the question, What did
we discuss last week, and what do we need to do today? Such a representation
can also help us answer the questions: How did other people deal with this
problem? and Can we learn from the past design cases? Carroll and Rosson
(1991 [this issue]) provide a good example. They report in detail how their
representation of design rationales, mentioned earlier, suggested many issues
for redesigning an artifact (the View Matcher in Smalltalk). They discuss how
these issues can be couched as a design hypothesis, which can be tested and
compiled to form, in the long run, “a contextualized science out of practice”
of human-computer interaction.

Our first model, however, does not help very much with the other
questions, although we should qualify this statement immediately. Saying
that it does not help much is not to say that we cannot answer these questions.
Of course, if the user works hard enough, and as long as the representation
based on the model has enough information captured, even in the form of
natural language free text, we can answer these questions. So the real issue is
how much the model itself helps us answer these questions either by helping
us see the structure better or by enabling us to define computational services
that help us answer the questions. We will see how more differentiated models
allow us to answer these questions more easily, although they increase the cost
in some other ways (see Conklin & Yakemovic, 1991 [this issue]).

Our second model (see Figure 2b) differs from the first by making multiple
alternatives and their relations explicit. Design involves formulating several
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alternatives, comparing them, and merging them, as many of the questions in
our list indicate. In our first model, only a single alternative is made explicit
at a given time, and the multiple alternatives are present only implicitly in the
argument space. Our second model makes these alternatives explicit, in-
cluding the ones that have been rejected. Once the alternatives become
explicit, we can talk about their attributes (e.g., current status such as
“rejected” or “waiting for more information”), make the relations among the
alternatives explicit (e.g., specialization, historical precedence), define com-
putational operations on them (e.g., comparing alternatives, displaying the
alternatives that specialize this alternative), or even argue about whether an
alternative is worth considering. The alternatives, other than the one finally
chosen, are interesting because many of the issues and the knowledge used in
evaluating them are useful in other contexts, for example, when situational
constraints change. We use the term alternative space to refer to this set of
multiple alternatives and their relations.

These relations among the alternatives can also be historical or logical.
Historical relations may be not only the linear sequence that we usually
describe as versions but also more complex relations such as layers and
contexts (Bobrow & Goldstein, 1980). The logical relations may include
Specializes, Generalizes, Elaborates, or Simplifies. Or alternatives can be
related through a design space (Mackinlay et al., 1990). To the extent that we
want a representation to stand for these different alternatives and their
relations, we say that the alternative space is within the scope of the
representation. gIBIS, for example, seems to include the alternative space
within its scope because one of its goals is “to capture alternative resolutions
(including those which are later rejected), [and] trade-off analysis among
these alternatives” (Conklin & Begeman, 1988, p. 304). The constructs in
gIBIS for representing the alternative space consist of: Position, with which
we can describe multiple alternatives, and the specialization relation among
the Positions.

By now, we have an alternative space connected to the argument space, as
shown in Figure 2b. For each of the alternatives, there are arguments
describing the reasons for its current evaluation, just as in our first model
there are arguments describing the evaluation status of that single alternative,
that is, that it was chosen. Some of the arguments can be shared; for example,
an argument can support an alternative while denying another; so it is better
to think of the arguments about the different alternatives forming a single
large argument space, as shown in Figure 2b.

With the representation of the alternative space, we can imagine how we
can make a system help us answer some of the questions posed in Section 2.
To answer “What are the alternative designs, and what are their pros and
cons?,” we can associate an argument space with each of the alternatives
through the links such as Supports or Objects To, as in gIBIS. To answer
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“Why do we even consider this alternative, and how is it related to the one that
we discussed last week?,” we need to use some historical relations (e.g.,
Replaces) or structural relations (¢.g., s a part of) among the alternatives.

Once we make explicit multiple alternatives, however, we need to articulate
more carefully what the argument space is about (Figure 2b). In our first
model, when we had a single artifact (i.e., the chosen one), the argument
space contained reasons for the choice of that artifact. Similarly, the
arguments for the other alternatives are about why they were not chosen or,
to generalize, why they have their particular evaluation status (e.g., “still in
consideration,” “waiting for more information,” “rejected”). These evaluation
statuses could be nominal categories (e.g., like the previous examples),
ordinal categories (e.g., “very good,” “good,” and “poor”), or a continuous
measure (e.g., the probability that the alternative will achieve a given set of
goals).

Therefore, we introduce the evaluation space (Figure 2¢), where the evalua-
tion statuses are made explicit and interrelated. Usually, we do not and need
not specify any elaborate relation among the evaluation measures we use.
Often, the implicit ordinal relation among these values (e.g., “very good,”
“good,” “poor,” “very poor”) is sufficient when we leave it for the human user
to assign these values to the alternatives. However, if we want to define any
computational service that manages these values, for example, that automat-
ically propagates and merges them to produce a higher level summary, then
we need to be very careful about what these values mean. We need to specify
the units of measurement, a calculus for combining them, and a model
specifying what they mean. Even in the case where these actions are left to
humans, for example, if the human user is expected to combine these values
to produce a higher level summary measure, then we need to set down what
these values mean so that their interpretation does not become arbitrary. To
the extent that a representation makes explicit the parts of the evaluation
space needed for merging individual evaluations into overall evaluations, we
can now answer questions such as: “What are the two most favorable
alternatives so far?” and “Sun Microsystems just released their X/NeWs
server. How would the release change our evaluations?” We can also explain
how an evaluation was made by pointing to the arguments in the argument
space behind the artifact in question and by explaining how this particular
evaluation measure is derived or computed from them or related to other
measures.

Making the evaluation space explicit allows us to differentiate two compo-
nents of the argument space: (a) arguments about why an alternative has its
current evaluation status and (b) arguments about the alternatives themselves
(e.g., why we should or should not even consider an object as an alternative
or whether this alternative is really a special case of another alternative). That
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is, as shown in Figure 2c, these different kinds of arguments can be
differentiated in the argument space.

Our models so far do not make explicit the criteria used in producing an
evaluation. However, the criteria used for the evaluation and their relations
are usually quite important to represent explicitly. For example, it is
important to know that the argument “We do not need to duplicate menu
items” is an argument for the alternative “Global menu at the top of the
screen” because of the goal of reducing screen clutter, which is used as a
criterion for evaluation. By making this criterion explicit, we can group all the
arguments that appeal to this criterion and weigh them against one another.
If the criterion changes or becomes less important, then we can do appropriate
things to all the arguments that presuppose the goal (e.g., making these
arguments less important). Knowing how this criterion is related to others
(e.g., “reducing screen clutter” is a way of achieving “easy to use”) also allows
us to assign proper importance to this criterion or to change its importance
when the related criteria changes. We use the term criteria space to refer to these
criteria and their relations. As Figure 2d shows, once we have the criteria
space explicit, we can further differentiate the argument space by grouping
those arguments that are about the criteria and their relations.

Hence, it is important that a language whose scope includes the criteria
space represent the different attributes of the criteria and the relationship
among them. For example, it should allow us to represent the importance of
these criteria and the synergistic or tradeoff relations among them. Some
criteria can be subcriteria of another in the sense that satisfying them
facilitates the satisfaction of the latter. These subcriteria can be related among
themselves in various ways. They can be mutually exclusive in the sense that
satisfying one makes it impossible to satisfy others. They can be independent
of each other in the sense that satisfying one does not change the likelihood of
satisfying others. These subcriteria can be related to their parent criterion in
various ways as well. They can be exhaustive in the sense that satisfying all of
them is equivalent to satisfying the parent.

With the criteria space represented, we can now see how the system might
be able to help us answer questions such as: What if we do not consider
portability? or Why is portability important anyway? The answer might be,
“If we give up the goal of portability, then the evaluation of the alternative X
changes to ‘High’ because all these claims that argue against X were based on
the importance of portability.” Or, “Portability is important because it is a
subgoal of another important goal, ‘Have a wide distribution.”” These
answers can be derived from a representation if the representation makes
explicit the relation among evaluations, criteria, and arguments. Of course,
representation of the criteria is not sufficient for answering these questions. It
1s not obvious how these questions can be answered, even if some parts of the
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criteria space are represented explicitly. However, the explicit representation
of the criteria space seems a necessary condition if we are to answer these
questions. At least, we would have the information necessary to define an
operation that will give or suggest the answers to these questions. We briefly
describe a few examples of such operations in Section 4.

So far, we have identified and discussed the structure of a single decision
underlying an artifact; namely, Which of the alternative designs should we
choose? However, with the representation of such local structures alone (viz.,
its argument space, alternative space, and criteria space), we still cannot ask
some of the questions in the list such as: What are the unresolved issues, and
what are we currently doing about them? What are the issues that depend on
this issue? To answer such questions, we need a more global picture of how
individual issues are related. A decision often requires and/or influences
many other decisions. For example, a decision can be a subdecision of another
if the latter requires making the first decision. A decision can be a
specialization of another if the first decision is a more detailed case of the
second. It is important to capture how these decisions are related, and we use
the term issue space to refer to them. A unit in this issue space is, therefore, a
single decision that has as its internal structure the other spaces, as shown in
Figure 2e. Once we have an issue as an explicit element, we can associate the
attributes such as “status” and “actions taken” with issues and answer questions
such as “What are the unresolved issues, and what are we currently doing
about them?” Representing the dependency relation among the issues will
allow us to answer the question “What are the issues that depend on this
issue?”

There are still some questions that we have not yet covered, such as: How
did other people deal with this problem? Can we learn from the past design
cases? We argue, however, that the five spaces identified so far —the spaces
of arguments, alternatives, evaluations, criteria, and issue—can contain
enough information to answer these questions. We support this argument by
showing how these questions can be answered with a language that we have
developed for representing design rationales. This language, called DRL, is
presented in the next section and is evaluated with respect to the five spaces
described in this section.

4. DRL (DECISION REPRESENTATION LANGUAGE)

DRL (see Lee, 1990a) is a language that we have developed for repre-
senting and managing the qualitative elements of decision making: for
example, the alternatives being considered, their current evaluations, the
arguments responsible for producing these evaluations, and the criteria used
for the evaluations. We call decision rationale the representation of these
qualitative elements, and we call a decision rationale management system a system
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Figure 3. The DRL vocabulary.

Alternative Achieves {alternative, goal)
Goal Decision Problem — Is a Good Alternative for (alternative, decision problem)
Supports (claim, claim)

Denies (claim, claim)

Presupposes (claim, claim)

Is A Subgoal Of (goal, goal)

— Is a Subdecision of (decision problem, decision prob
Claim Is Related to
onl}:d Answers (claim, question)
Is An Answering Procedure for (procedure, g
Is A Result of (claim, procedure)
Question Tradeoffs (object, object, attribute)

Is A Kind of (object, object)

Group Raises (object, question)
Viewpoint Suggests (object, object) <

Comments (claim, object)
Procedure

Status ~—— Decided

that provides an environment for capturing decision rationale and computa-
tional services using it. Decision rationale in our sense does not capture some
important aspects of design rationale. For example, a design rationale may
include the deliberations about how to generate the alternative designs. The
scope of DRL, at least for now, does not include the representation of such
deliberations.* The exact relation between decision rationale and design
rationale, however, has yet to be articulated. Nevertheless, we believe that
DRL is the most expressive language that has been used for representing
design rationales and that it overcomes many of the limitations in the existing
languages in a way that is still simple enough for the user. In this section, we
evaluate DRL as a design rationale representation language and point out its
strengths and limitations as such.

4.1. Description of DRL

Figure 3 shows the object types that form the vocabulary of DRL. Objects
of type Is Related t0 and its subtypes can be used to link other objects. For
instance, an achieves relation can be used to link an Alternative object to a
Goal object. The legal types that can be linked are shown inside the
parentheses following the names of the relations. Figure 4 shows graphically

* That is not to say that DRL does not help us generate alternative designs. It does in a couple
of ways. DRL allows people to argue about the existing alternative designs, thus helping them to
see more clearly their strengths and limitations. It also helps people retrieve the past decisions that
contain useful alternative designs that are still useful for the current decision or those that can be
so adapted. Furthermore, DRL can represent the relationship between the existing alternative
and the new alternative that may have been derived from it. However, being able to generate a
new design alternative is still different from representing the rationales for how it was generated.
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Figure 4. The structure of a decision graph.
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how DRL objects can be linked to each other. Figure 5 shows an example
decision rationale represented in DRL. We describe the basic features of
DRL briefly and discuss in detail how they allow us to represent the five
spaces of design rationale. One should note that the following is not a
description of the way the user would use DRL. The actual interface is briefly
described later.

A qualification is in order before we proceed further. The vocabulary of
DRL presented in this section is a minimal set in the following sense. The
initial set included those objects and relations (e.g., alternatives, goals, and
claims) needed to represent the important elements of the spaces discussed in
the previous section. Then the initial set has been augmented with additional
constructs only when they were needed and judged to be useful for generic
decision tasks, that is, useful in decisions independent of any particular
domain. As such, the DRL constructs presented here are meant to be
specialized and augmented further for a specific set of tasks. For example,
Lee (1991) describes an extension of DRL that supports the task of managing
rationales in software engineering.

A Decision Problem represents the problem that requires a decision {e.g.,
where to place the window commands). An Alternative represents an option
being considered: for example, “In the global menu at the top of the screen.”
A Goal represents a desirable state or property used for comparing the
alternatives. A Goal such as “Where should the window be?” is elaborated
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Figure 5. An example rationale in DRL.
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further in terms of its subgoals. For example, “Easy to use” is elaborated into
two subgoals, “Can easily access command items” and “Reduce screen
clutter.”® Every relation in DRL is a subclass of Claim, as shown in Figure 3.
For example, the rightmost Achieves link in Figure 5 represents the Claim
that the Alternative, “the global menu at the top of the screen,” achieves the
Goal, “Reduce screen clutter.”

We evaluate an Alternative with respect to a Goal by arguing about the
Achieves relation between the Alternative and the Goal, that is, the claim that
the Alternative achieves the Goal. We argue about a Claim by producing
other Claims that Support or Deny the Claim or by qualifying the Claim by
pointing out the Claims that it Presupposes. Each Claim has the following
attributes: evaluation, plausibility, and degree. The evaluation of a Claim,
represented by the value of its evaluation attribute, is a function of both of its
plausibility and degree attribute values. The plausibility of a Claim tells us

® Because goals are described by desired states of the world, the exact meaning of the “Easy to
use” subgoal should be “The window commands should be at a place where they are easy to use.”
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how probable it is for the claim to be true, and the degree of a Claim tells us
to what extent it is true. For example, the degree of the Achieves link between
the Alternative and the Goal tells us to what degree the alternative achieves
the goal in question. The overall evaluation of an alternative is represented by
the degree attribute value of the Is a Good Alternative for link between the
Alternative and the Decision Problem, that is, the claim that the alternative
is a good alternative resolution for the issue. This degree is a function of the
degrees of the Achieves claims that link the Alternative to the different
Goals. Not all of the three attributes have to be used for the evaluation. For
example, we might require that a Claim be entered only if its plausibility is
above a certain threshold and ignore the plausibility once the Claim has been
entered. In that case, we can do away with the plausibility attribute, and the
evaluation and the degree attributes become synonymous.

There are other auxiliary objects in DRL. A Group object groups a number
of objects and has the attribute, “member relations,” which tells us how the
objects are related. A relation can take a Group of objects rather than a single
object. For example, a Goal may be related to a Group of other Goals
through a Is a Subgoal of link. The other objects in DRL, such as Question,
Procedure, and Viewpoint, represent somewhat auxiliary aspects of decision
making such as the questions raised and the procedures used for answering
the questions. More details of DRL may be found in Lee (1990a).

DRL has been partially implemented in a system called siByL, which runs
on top of Object Lens (l.ai, Malone, & Yu, 1988). Although the previous
description of DRI may seem complex, the actual user interface provided by
siBYL for using DRL is quite simple, and siBYL has been used for real group
decision tasks such as designing a workplace layout. For example, siBYL makes
it easy to create objects like a Decision Problem, Goals, and Alternatives by
providing context-sensitive menus and template editors. Once a Decision
Problem and some of its Goals and Alternatives are specified, sisyL displays
them in a matrix such as that shown in Figure 6. By mouse clicking on a cell
of the matrix, the user gets the menu of all the actions that can be performed
on the selected object. For example, by mouse clicking on a Goal, the user can
get a menu containing action items such as creating a new subgoal or
displaying a goal tree showing how this Goal is related to other Goals.

Figure 6 also shows an argument browser displayed when the user chooses
the action, “Display Arguments,” from a pop-up menu that appears when one
of the evaluation cells is selected. The argument browser shows, in a network
format, all the Claims that provide reasons for the evaluation, that is, all the
claims related to the surrogate claim that the system automatically generates
to be argued about, namely, that a given alternative achieves a given goal. By
mouse clicking on an object in the argument browser, the user gets a pop-up
menu of all the operations that can be performed on the object: such as “Add
a Supporting Claim,” “Add a Denying Claim,” and “Add a Qualifying Claim.”
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Figure 6. User interface for siByL.

| Show
Close Goal Lattice Add Goal Add Alternative Others
Dacislon’ Matrix for: Where to place the window u
Goals Can Emily Access Reduce Screen Clutter
ommands
importance H+ H
Alternatives
In the giobal memu bar ot /——® H
the top of the screen
On each wind H
Close Display Change Display Format Add Others

Link

Denies Presupposes Suggests Answers

- - - e—— -

Supports

"In the global menu bar at the top of the window”
achicves "Can casil muc::;nnndx

~y Commands not applicable © the
curent window would be shown
and distracting.

x
~
~
~

I Irrelevant commands can be dimmed. ]

When the user chooses one of these actions, the template editor containing a
new Claim object appears, and the new object is added to the argument
browser with an appropriate link to the object chosen. The user interface that
sIBYL provides for using DRL is described in more detail in Lee (1990b).
Using the decision rationale represented in DRL, the computer can provide
many services, such as managing the dependencies among claims, propa-
gating and merging the plausibilities automatically, providing multiple
viewpoints, and retrieving useful knowledge from past decisions (for more
details, see Lee, 1990a).

4.2. Evaluation of DRL as a Design Rationale Language

The Argument Space

An argument is represented in DRL as a set of related Claims. A Claim
subsumes what other people might call facts, assumptions, statements, or
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rules. Instead of making these distinctions, which is sometimes arbitrary and
difficult to make, a DRL Claim has the attribute, plausibility, which indicates
how much confidence we have in the claim. This has the advantage of not
imposing a set of predetermined categories on the user and avoiding the
ambiguity resulting from the disagreement among people on what facts or
assumptions are. When it is desirable to make the distinction, say, between
facts and assumptions, we can do so simply or by specializing a claim or by
using nominal categories like “fact” and “assumption” as values for the
plausibility attribute in different Claims. We can do so after the fact or
dynamically by using a numeric measure as the plausibility value and
mapping between this measure and the measure based on the nominal
categories such as factors or assumptions. Therefore, users do not have to
conform to static categories prespecified by the designer of the vocabulary.
We discuss different plausibility measures when discussing the evaluation
space.

A Claim can be Supported, Denied, or Presupposed by another Claim.
These relations among the Claims allow us to respond to a Claim directly
without, as in IBIS, having to respond indirectly to the Position that responds
to the second Claim. For example, the Claim, “Irrelevant commands can be
dimmed,” directly denies the Claim, “The commands not applicable to the
current window would be shown and distracting,” rather than having to be
formulated as a Glaim for the Alternative in question. These direct relations
among the Claims allow us to see the logical and the dynamic structure of the
argument more easily. All DRL relations are special types of Claims. For
example, when we link a Glaim 1 to Ciaim 2 through a Supports relation, we
are making the claim that Claim 1 supports Claim 2. Likewise, an Achieves
relation from an Alternative object to a Goal object represents the claim that
the alternative achieves the goal. Hence, any DRL relation, like Supports,
Denies, Achieves, |s A Subgoal Of, is a Claim and can be argued about;
that is, people can support, deny, or qualify them. For example, “Commands
not applicable to the current window would be shown and distracting” is
denied by “Irrelevant commands can be dimmed.” That the first Claim is
denied by the second itself is a relational Claim, which is then denied by
“Dimmed commands are still distracting by their mere presence.”

The Criteria Space

DRL represents the criteria space fairly well. In DRL, criteria are
represented by Goals. DRL uses the term Goal rather than Criterion because,
for each criterion, we can always define a corresponding goal (viz., the goal
of achieving the criterion) and because we want to convey the richer
relationship among these goals than what the term criteria usually conveys. For
example, a Goal Is a Subgoal of another Goal if achieving the first Goal
facilitates the achievement of the second. Subgoals can be related among
themselves in various ways; they can be mutually exclusive, independent of
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each other, or partially overlapping. These relationships are represented by
creating a Group object and specifying these Goals to be its members; the
relations among these Goals are specified in the “member relations” property
of the Group.

Decision Problem represents the goal of choosing the best alternative. All
the other goals for the decision problem are subgoals of the decision problem
in the sense that they elaborate what it means to choose the best alternative.
For example, the Goal “Easy to use” is a subgoal of the Decision Problem of
our example if we interpret it to mean “Choose the alternative that has the
property ‘Easy to use.”” In other words, satisfying this goal facilitates the
achievement of the goal of choosing the best alternative.®

Because the Is a Subgoal of relation is a Claim, as is any other DRL
relation, we can argue about whether a goal is desirable or whether it
contributes to achieving another goal by arguing about this relational claim.
For example, we can argue about whether small implementation should be a
goal at all. In Figure 5, there is an argument, “It should not be a goal because
Mac is going to have large memory soon,” denying that it is a subgoal of the
decision problem; that is, small implementation is not a desirable property
that should be used to compare alternatives. The record of these Claims and
their relations represents the argument space for the goal space. Lee (1990a)
discussed how this representation of Goals in DRL allows us to create
multiple viewpoints and to extract from past decisions knowledge useful to the
current decision.

The Alternative Space

DRL represents only parts of the alternative space well. DRL can represent
alternatives and the specialization relation among them through the Is a Kind
of relation. Thus, we can say that “Commands at the top of the window” is a
special case of the alternative, “On each window.” However, design alterna-
tives may be related in much more complex ways than through the special-
ization relation. An Alternative can be related to another Alternative via, for
example, the following relations: Elaborates, Simplifies, or Is the Next
Version of. Alternatives can be related in a more complex way, for example,
in the context of a design space. These relations are beyond the current
expressive power of DRL.

DRL represents the arguments about the alternative space the same way it
represents the arguments about the goal space. We can argue about whether

© The precise semantics of the model underlying DRL are more complicated and are fully
explained in Lee (1991). Roughly, for a given decision problem of the form, “What is the best
alternative for X?,” its underlying interpretation is, “the goal of choosing the best alternative for
X.” Its subgoal of the form, G, is strictly speaking “the goal of choosing the alternative that
satisfies G.” An alternative of the form, 4 (e.g., the global menu bar at top of the screen), is to
be interpreted as, “choosing the alternative, A.” It is in this sense that a decision problem is the
parent of the other goals and that an alternative achieves a goal. This nicety, although important
for computational purposes, can be ignored by human users.
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an alternative should be an alternative at all or whether an alternative is really
a specialized version of another alternative by creating Claims that deny or
support the appropriate relations, such as Is a Good Alternative for or Is a
Kind of. The relations also can be qualified by linking them to another Claim
via a Presupposes relation. For example, we can say that “commands on each
window” is an alternative only if the window system allows the attachment of
menu windows to the main window by linking the two claims with a
Presupposes relation. One can of course object to this Claim, in turn, by
pointing out another way of implementing the window commands at the top
of the window.

The Evaluation Space

In DRL, each Claim has the following attributes: evaluation, plausibility,
and degree. The evaluation attribute tells us how important the claim is, and
its value is a function of both plausibility (how likely the claim is true) and
degree (to what extent the claim is true). The overall evaluation of an
alternative is represented as the evaluation attribute value of the relational
claim, 1s a Good Alternative for, between the Alternative and the Decision
Problem. This value represents the extent to which the alternative satisfies the
overall goal. This value, in turn, is a function of the evaluations of the
Achiseves relations that link the Alternative to the subgoals of the Decision
Problem (i.e., the extent to which the alternative satisfies the subgoals). It is
also a function of how the subgoals interact to satisfy the parent goal, such as
the extent to which tradeoffs and synergies exist among these goals.

DRL does not commit to a particular measure of evaluation. Users of DRL
can use nominal categories, numeric measures, or whatever they devise for
evaluation. However, such evaluation measures should come with the
algorithm for propagating and merging them to produce evaluation measures
at a higher level. For example, if we want to use probability as the measure
of plausibility, then we should also know how the probability of the two
Claims —“The alternative ‘In the global menu bar . . .” achieves the goal ‘Can
easily access commands’ ” and “The alternative ‘In the global menu bar . . ’
achieves the goal ‘Reduce screen clutter’ ”—combines over the subgoal
relations to produce the probability of the Claim, “The alternative ‘In the
global menu bar . . ." achieves the goal ‘Easy to use,” ” given that we also know
how these subgoals are related among themselves and to the parent goal. We
might try to work out such an algorithm based on Bayes’s theorem, for
example.

However, as discussed in Section 2, the exact algorithm is important only
to the extent that the user can trust the algorithm. That is, if the algorithm is
based on many assumptions that the user feels are seriously violated, then the
exactness of the algorithm does not contribute much. We might as well
concentrate on how to support people for making these judgments. DRL
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takes this philosophy and tries to help by modularizing and helping to make
explicit the relationships that need to be considered for these judgments.

The Issue Space

In DRL, the unit of the issue space is a decision problem. A Decision
Problem corresponds to an Issue of gIBIS and a Question in “Questions,
Options, and Criteria” (QOC). A decision problem Is a Subdecision of
another decision problem if a decision for the first requires a decision for the
second. For example, deciding where to place the window commands might
require deciding what the window layout algorithm is (e.g., tilting or
overlapping). A decision problem Is a Kind of another decision problem if the
first decision problem is a special case of the second: For example, “Where to
place the emacs window commands?” is a special case of “Where to place the
window commands?” Of course, we can relate the decision problems through
the generic relations such as Is a kind of and Is a part of. We are sure that
there are many other possible relations. For example, the Replaces relation
in IBIS seems important for describing the dynamic aspect of the issue space.
DRL, however, is based on the philosophy that the vocabulary should be
extended to tailor the task in hand and that it is better to provide 2 method for
extending the vocabulary as needed rather than to provide constructs that
may not be useful in general.

5. RELATION TO OTHER STUDIES

In Lee and Lai (1991), we described other existing representations for
design rationales and assessed them by using the framework developed in this
article. We also discussed the relation between these representations and
DRL; here, we provide a brief summary.

First, there are several representations based on IBIS (Kunz & Rittel,
1970), whose goal is to represent designers’ argumentation activities. The
most well known among them is gIBIS (Conklin & Begeman, 1988; Conklin
& Yakemovic, 1991 [this issue]). The units of the Issue Space, the
Alternative Space, and the Argument Space are, respectively, Issue,
Position, and Argument. gIBIS provides no constructs for representing the
Criteria Space.” Because criteria are not explicit, we cannot argue about
them; we cannot represent the reasons for having these criteria; and we

7 When we say that a representation cannot express some information, we do not mean that
people cannot infer that information from the representation. For example, if we keep a detailed
enough record in natural language of what happened, or even a video recording of the whole
design process, we can always retrieve the information that has been recorded by working hard
enough. When we say that a representation cannot express some information, we mean that the
representation does not provide constructs that make the information explicit in such a way that
help people easily see the structure or make it amenable to computational manipulation.
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cannot indicate any relationship, such as mutual exclusiveness, among the
criteria. Further, when criteria change, there is no easy way to accommodate
the changes. It would be more difficult to isolate the real disagreements
among people, because the criteria they use in their arguments remain
implicit. The explicit representation of goals can also provide modular
representations of arguments, multiple viewpoints, and can serve as a basis
for relevance matching (cf. Lee, 1990a).

gIBIS’s constructs for describing the argument space is also limited in
several ways, as we pointed out in Lee and Lai (1991). For example, you
cannot qualify an argument. Furthermore, because relations are not claims,
as in DRL, there is no way of saying that we agree with 4 and B but not that
4 Supports B. The ability to argue about relational claims is important. For
example, one may agree that the global menu bar is a bad idea and that seeing
irrelevant commands is distracting but not that the second claim supports the
first; for instance, the global menu bar does not have to show the irrelevant
commands. Also, arguments cannot directly respond to other arguments.
Therefore, a query such as “Show me all the arguments that respond to this
argument” cannot be computed by the system.

The gIBIS structure has the advantage of being simple at least from the
representation standpoint. However, we believe that the foremost criteria for
a representation is not whether 1t is simple, but whether it helps users
accomplish their tasks. This capacity to help is in turn determined by the
trifactors of human usability, machine usability, and expressiveness. As
Figure 1 indicates, there is a certain directionality among these three factors.
An expressive language can be made easy to use with an appropriate user
interface, but it is impossible to make a usable language more expressive.
Therefore, it seems that a good starting point is to design an expressive
language rather than one that is simple to use. DRL can be viewed as
extending gIBIS in several ways: an explicit representation of the criteria
space, a richer representation of the argument space, and the provision of an
infrastructure for defining evaluation measures.

Procedural Hierarchy of Issues (PHI; McCall, 1987) overcomes some of
the gIBIS limitations by allowing a quasi-hierarchical structure among issues,
answers, and arguments. The semantics of the hierarchical relation are
different for the different spaces. In the issue space, if 1ssue A is a child of
issue B, that means A “serves” B—That is, resolving A helps resolving B. In
the answer space (i.e., the alternative space), an Answer is a child of another
if the first is a more specific version of the second. In the argument space, an
Argument is a child of another if the first is a response to the second. Hence,
unlike in gIBIS, we can respond to an Argument directly by making it a child
node of the Argument. Furthermore, PHI is guasi-hierarchical and allows the
sharing of nodes (i.e., multiple parents) and cyclic structures. Although the
quasi-hierarchy increases the expressiveness of PHI, some important relations
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cannot be easily expressed in this structure. An Issue cannot specialize
another Issue, and Answer cannot serve another Answer, and so forth.
Therefore, the same comments about not explicitly representing relations in
gIBIS apply to PHI. DRL can be viewed as pushing further the extensions
that PHI made to IBIS by generalizing the hierarchical structure to more
complex relations and by making explicit some other elements, especially
those in the criteria space.

Potts and Bruns (1988) extended IBIS to represent the derivation history of
an artifact design. One starts with an abstract Artifact (e.g., a plan for a
formatter), associates with it the Issues that arise in making the plan more
concrete, associates with each of the Issues the Alternatives considered (some
of which lead to a more concrete plan), and so on until the plan is concrete
enough to be implemented. Associated with each Alternative may be a
Justification, which is the unit of the argument space. This representation
is interesting because it allows us to describe yet another space that we might
call the Artifact Space, where the evolving versions of an artifact over time
are related. An extension of DRL that incorporates this additional space was
presented in Lee (1991).

JaNus (Fischer et al., 1989) is interesting as an attempt to bridge two
representations. One of its components, CRACK, uses a rule-based language
for representing domain-specific knowledge (e.g., about kitchen design). The
other component, ViewPoints, uses PHI to represent the rationale for the
decisions made. JANUS integrates the two representations by finding the
appropriate rationales represented in PHI for the particular issue that
designers face in the construction phase, that is, while using crRack. Although
the current interface is limited to that of locating the relevant parts of the
representations, bridging a design rationale representation and a domain
representation is a very important topic of research because such a bridge can
allow us to represent the relations among the alternatives or the criteria in
more domain-specific ways.

QOC is a representation proposed by MacLean et al. (1991 [this issue])
whose constructs map clearly to the framework proposed in this article.
Question, Option, and Criterion are, respectively, the units of the issue
space, the alternative space, and the criteria space. A Criterion (e.g.,
“reduce screen clutter”) is said to be a “bridging criterion” if it is a more
specific one that derives its justification from a more general one (e.g., “easy
to use”). The units of the evaluation space are links labeled with “+” and
“—,” corresponding to whether an option does or does not achieve a given
criterion. Some constructs for representing the argument space are Data,
Theory, and Ad Hoc Theory. One supports the evaluation (“+” or “—”) of an
Option with respect to a Criterion by appealing to empirical Data (e.g., “The
mouse is a Fitts's law device”) or to an accepted Theory (e.g., “Fitts’s law”).
When there is neither relevant data at hand nor existing theory to draw on,
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the designers may have to construct an Ad Hoc Theory, which is an
approximate explanation of part of the domain. MacLean et al. provide an
illuminating discussion of the other forms of justifications for design, such as
various forms of dependencies and metaphors, although no specific constructs
are discussed for representing them.

QOC as we understand it has a number of limitations as a representation
language, as we pointed out in Lee and Lai (1991). First, in the argument
space, constructs like Data, Theory, or Ad Hoc Theory do not seem to capture
many aspects of arguments. For example, it is not clear how an argument
such as “Irrelevant commands can be dimmed” should be treated, given that
it is neither a piece of empirical data nor a theory. And it is not clear whether
and how we can argue about theories or individual claims in theories. In the
alternative space, there is a reference to cross-option dependency, but no
specific constructs are discussed for representing it. Given the ambiguity
about what exactly constitutes the vocabulary of QOC, however, QOC seems
to be more of a model than a fully developed representation language.® That
is, it seems to be an attempt to understand and categorize the elements of
design rationale without providing a specific vocabulary for expressing them.
This observation is also consistent with the authors’ warning against prema-
ture commitment to a specific representation (MacLean et al., 1989).
Considering the similarity between QOC and DRL in the underlying
structure, we hope that DRL provides a representation language adequate for
representing most of the elements that the QOC research has been articulat-
ing.

6. CONCLUSIONS

A large body of research in the last two decades or so points to the
importance of choosing the right representation for a given task (Amarel,
1968; Bobrow, 1975; Brachman & Levesque, 1985; Lenat & Brown, 1984;
Winston, 1984). The task of using and reusing design rationales is no
different. The benefits we can get and how easily we can get them depends
heavily on the representation we use. The choice of representation is
especially important when a human is the user of the representation, as in
design rationale capture, because a wrong representation can turn people
away from the task altogether, attributing the failure and frustration to the
task itself rather than the inadequacy of the representation used. People might
conclude that capturing design rationales is not worth the trouble because it
is so hard and because it does not provide enough rewards for the efforts. But
the real problem might be that the representation does not allow us to
represent easily what we want to represent in a way that can provide much

8 See footnote 1 about the distinction between model and representation.
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benefit. Thus, it is important that we know how to evaluate a representation
for a given task, in our case, for capturing design rationales.

In this article, we made a step forward by characterizing the domain of
design rationale, that is, by identifying the kinds of elements that form the
rationale as well as the relations that hold among them. Characterizing this
domain is important because we then know what we can represent, what we
have decided not to represent, and what the consequences will be. It also helps
us to map the different meanings of design rationale by associating them with
the different parts or aggregates of the domain. In other words, it provides a
framework for defining the scope and assessing the expressive adequacy of a
representation. Using the framework, we defined the existing representations’
scope and discussed their adequacy. We have also presented a language,
called DRL, which we believe is more expressive than most of the existing
languages and overcomes many of their limitations in a way that is still
natural to human users. However, that is a testable claim that we plan to
investigate empirically by using DRL with many tasks by many users. We
also discussed the limitations of DRL, which we hope will be explored by us
and others in future research.

The step we made, however, is a small one, and we have a long way to go
before we fully understand the important issues in designing an ideal
representation for representing design rationales. We provided a framework
for evaluating a design rationale representation along one dimension—its
expressive power. Even then, expressiveness involves more than being able to
represent the elements in the domain explicitly or not. There are many other
characteristics, such as the ability to provide abstractions, that are important
(see Bobrow, 1975). We need to think about whether these characteristics
matter much for the task we have in hand and in what way they matter. Then,
there are other dimensions to a representation than its expressiveness. In
Section 2, we mentioned two other categories: human usability and compu-
tational tractability. We need to articulate the characteristics that make a
representation more usable. We also need to identify the computational
services we can provide with design rationales so that we know what they
require and any tradeoff between their requirements and other requirements
such as human usability. In addition to the articles in this issue, there are
some existing studies that address these problems (Lee, 1989; Newman &
Marshall, 1990; Shum, 1991; Yakemovic & Conklin, 1990). We need more
such studies, more focus on the representation being used, and more
systematic categorization of the results. We believe that the benefits from
explicit representation of design rationales would more than pay for the
efforts that we put into such studies.
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