
2
Collaborative recommendation

The main idea of collaborative recommendation approaches is to exploit infor-
mation about the past behavior or the opinions of an existing user community
for predicting which items the current user of the system will most probably
like or be interested in. These types of systems are in widespread industrial use
today, in particular as a tool in online retail sites to customize the content to
the needs of a particular customer and to thereby promote additional items and
increase sales.

From a research perspective, these types of systems have been explored for
many years, and their advantages, their performance, and their limitations are
nowadays well understood. Over the years, various algorithms and techniques
have been proposed and successfully evaluated on real-world and artificial test
data.

Pure collaborative approaches take a matrix of given user–item ratings as the
only input and typically produce the following types of output: (a) a (numerical)
prediction indicating to what degree the current user will like or dislike a certain
item and (b) a list of n recommended items. Such a top-N list should, of course,
not contain items that the current user has already bought.

2.1 User-based nearest neighbor recommendation

The first approach we discuss here is also one of the earliest methods, called
user-based nearest neighbor recommendation. The main idea is simply as
follows: given a ratings database and the ID of the current (active) user as
an input, identify other users (sometimes referred to as peer users or nearest
neighbors) that had similar preferences to those of the active user in the past.
Then, for every product p that the active user has not yet seen, a prediction is
computed based on the ratings for p made by the peer users. The underlying
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14 2 Collaborative recommendation

Table 2.1. Ratings database for collaborative recommendation.

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
User4 1 5 5 2 1

assumptions of such methods are that (a) if users had similar tastes in the past
they will have similar tastes in the future and (b) user preferences remain stable
and consistent over time.

2.1.1 First example

Let us examine a first example. Table 2.1 shows a database of ratings of the
current user, Alice, and some other users. Alice has, for instance, rated “Item1”
with a “5” on a 1-to-5 scale, which means that she strongly liked this item. The
task of a recommender system in this simple example is to determine whether
Alice will like or dislike “Item5”, which Alice has not yet rated or seen. If
we can predict that Alice will like this item very strongly, we should include
it in Alice’s recommendation list. To this purpose, we search for users whose
taste is similar to Alice’s and then take the ratings of this group for “Item5” to
predict whether Alice will like this item.

Before we discuss the mathematical calculations required for these predic-
tions in more detail, let us introduce the following conventions and symbols.
We use U = {u1, . . . , un} to denote the set of users, P = {p1, . . . , pm} for
the set of products (items), and R as an n × m matrix of ratings ri,j , with
i ∈ 1 . . . n, j ∈ 1 . . . m. The possible rating values are defined on a numerical
scale from 1 (strongly dislike) to 5 (strongly like). If a certain user i has not
rated an item j , the corresponding matrix entry ri,j remains empty.

With respect to the determination of the set of similar users, one common
measure used in recommender systems is Pearson’s correlation coefficient. The
similarity sim(a, b) of users a and b, given the rating matrix R, is defined in
Formula 2.1. The symbol ra corresponds to the average rating of user a.

sim(a, b) =
∑

p∈P (ra,p − ra)(rb,p − rb)
√∑

p∈P (ra,p − ra)2
√∑

p∈P (rb,p − rb)2
(2.1)
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2.1 User-based nearest neighbor recommendation 15

Alice

User1

User4

6

5

4

3

2

1

0
Item1 Item2 Item3 Item4

Ratings

Figure 2.1. Comparing Alice with two other users.

The similarity of Alice to User1 is thus as follows (rAlice = ra = 4, rUser1 =
rb = 2.4):

(5 − ra) ∗ (3 − rb) + (3 − ra) ∗ (1 − rb) + · · · + (4 − ra) ∗ (3 − rb))
√

(5 − ra)2 + (3 − ra)2 + · · ·
√

(3 − rb)2 + (1 − rb)2 + · · ·
= 0.85

(2.2)

The Pearson correlation coefficient takes values from +1 (strong positive
correlation) to −1 (strong negative correlation). The similarities to the other
users, User2 to User4, are 0.70, 0.00, and −0.79, respectively.

Based on these calculations, we observe that User1 and User2 were some-
how similar to Alice in their rating behavior in the past. We also see that
the Pearson measure considers the fact that users are different with respect to
how they interpret the rating scale. Some users tend to give only high ratings,
whereas others will never give a 5 to any item. The Pearson coefficient factors
these averages out in the calculation to make users comparable – that is, al-
though the absolute values of the ratings of Alice and User1 are quite different,
a rather clear linear correlation of the ratings and thus similarity of the users is
detected.

This fact can also be seen in the visual representation in Figure 2.1, which
both illustrates the similarity between Alice and User1 and the differences in
the ratings of Alice and User4.

To make a prediction for Item5, we now have to decide which of the neigh-
bors’ ratings we shall take into account and how strongly we shall value their
opinions. In this example, an obvious choice would be to take User1 and User2
as peer users to predict Alice’s rating. A possible formula for computing a pre-
diction for the rating of user a for item p that also factors the relative proximity
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16 2 Collaborative recommendation

of the nearest neighbors N and a’s average rating ra is the following:

pred(a, p) = ra +
∑

b∈N sim(a, b) ∗ (rb,p − rb)∑
b∈N sim(a, b)

(2.3)

In the example, the prediction for Alice’s rating for Item5 based on the
ratings of near neighbors User1 and User2 will be

4 + 1/(0.85 + 0.7) ∗ (0.85 ∗ (3 − 2.4) + 0.70 ∗ (5 − 3.8)) = 4.87 (2.4)

Given these calculation schemes, we can now compute rating predictions
for Alice for all items she has not yet seen and include the ones with the
highest prediction values in the recommendation list. In the example, it will
most probably be a good choice to include Item5 in such a list.

The example rating database shown above is, of course, an idealization of
the real world. In real-world applications, rating databases are much larger and
can comprise thousands or even millions of users and items, which means that
we must think about computational complexity. In addition, the rating matrix is
typically very sparse, meaning that every user will rate only a very small subset
of the available items. Finally, it is unclear what we can recommend to new
users or how we deal with new items for which no ratings exist. We discuss
these aspects in the following sections.

2.1.2 Better similarity and weighting metrics

In the example, we used Pearson’s correlation coefficient to measure the sim-
ilarity among users. In the literature, other metrics, such as adjusted cosine
similarity (which will be discussed later in more detail), Spearman’s rank cor-
relation coefficient, or the mean squared difference measure have also been
proposed to determine the proximity between users. However, empirical anal-
yses show that for user-based recommender systems – and at least for the best
studied recommendation domains – the Pearson coefficient outperforms other
measures of comparing users (Herlocker et al. 1999). For the later-described
item-based recommendation techniques, however, it has been reported that
the cosine similarity measure consistently outperforms the Pearson correlation
metric.

Still, using the “pure” Pearson measure alone for finding neighbors and for
weighting the ratings of those neighbors may not be the best choice. Consider,
for instance, the fact that in most domains there will exist some items that are
liked by everyone. A similarity measure such as Pearson will not take into
account that an agreement by two users on a more controversial item has more
“value” than an agreement on a generally liked item. As a resolution to this,
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2.1 User-based nearest neighbor recommendation 17

Breese et al. (1998) proposed applying a transformation function to the item
ratings, which reduces the relative importance of the agreement on universally
liked items. In analogy to the original technique, which was developed in the
information retrieval field, they called that factor the inverse user frequency.
Herlocker et al. (1999) address the same problem through a variance weighting
factor that increases the influence of items that have a high variance in the
ratings – that is, items on which controversial opinions exist.

Our basic similarity measure used in the example also does not take into
account whether two users have co-rated only a few items (on which they may
agree by chance) or whether there are many items on which they agree. In fact,
it has been shown that predictions based on the ratings of neighbors with which
the active user has rated only a very few items in common are a bad choice
and lead to poor predictions (Herlocker et al. 1999). Herlocker et al. (1999)
therefore propose using another weighting factor, which they call significance
weighting. Although the weighting scheme used in their experiments, reported
by Herlocker et al. (1999, 2002), is a rather simple one, based on a linear
reduction of the similarity weight when there are fewer than fifty co-rated
items, the increases in prediction accuracy are significant. The question remains
open, however, whether this weighting scheme and the heuristically determined
thresholds are also helpful in real-world settings, in which the ratings database is
smaller and we cannot expect to find many users who have co-rated fifty items.

Finally, another proposal for improving the accuracy of the recommenda-
tions by fine-tuning the prediction weights is termed case amplification (Breese
et al. 1998). Case amplification refers to an adjustment of the weights of the
neighbors in a way that values close to +1 and −1 are emphasized by multi-
plying the original weights by a constant factor ρ. Breese et al. (1998) used 2.5
for ρ in their experiments.

2.1.3 Neighborhood selection

In our example, we intuitively decided not to take all neighbors into account
(neighborhood selection). For the calculation of the predictions, we included
only those that had a positive correlation with the active user (and, of course,
had rated the item for which we are looking for a prediction). If we included
all users in the neighborhood, this would not only negatively influence the
performance with respect to the required calculation time, but it would also
have an effect on the accuracy of the recommendation, as the ratings of other
users who are not really comparable would be taken into account.

The common techniques for reducing the size of the neighborhood are to
define a specific minimum threshold of user similarity or to limit the size to
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18 2 Collaborative recommendation

a fixed number and to take only the k nearest neighbors into account. The
potential problems of either technique are discussed by Anand and Mobasher
(2005) and by Herlocker et al. (1999): if the similarity threshold is too high,
the size of the neighborhood will be very small for many users, which in turn
means that for many items no predictions can be made (reduced coverage).
In contrast, when the threshold is too low, the neighborhood sizes are not
significantly reduced.

The value chosen for k – the size of the neighborhood – does not influence
coverage. However, the problem of finding a good value for k still exists:
When the number of neighbors k taken into account is too high, too many
neighbors with limited similarity bring additional “noise” into the predictions.
When k is too small – for example, below 10 in the experiments from Herlocker
et al. (1999) – the quality of the predictions may be negatively affected. An
analysis of the MovieLens dataset indicates that “in most real-world situations,
a neighborhood of 20 to 50 neighbors seems reasonable” (Herlocker et al.
2002).

A detailed analysis of the effects of using different weighting and similarity
schemes, as well as different neighborhood sizes, can be found in Herlocker
et al. (2002).

2.2 Item-based nearest neighbor recommendation

Although user-based CF approaches have been applied successfully in different
domains, some serious challenges remain when it comes to large e-commerce
sites, on which we must handle millions of users and millions of catalog items.
In particular, the need to scan a vast number of potential neighbors makes it
impossible to compute predictions in real time. Large-scale e-commerce sites,
therefore, often implement a different technique, item-based recommendation,
which is more apt for offline preprocessing1 and thus allows for the computation
of recommendations in real time even for a very large rating matrix (Sarwar
et al. 2001).

The main idea of item-based algorithms is to compute predictions using the
similarity between items and not the similarity between users. Let us examine
our ratings database again and make a prediction for Alice for Item5. We first
compare the rating vectors of the other items and look for items that have ratings
similar to Item5. In the example, we see that the ratings for Item5 (3, 5, 4, 1) are
similar to the ratings of Item1 (3, 4, 3, 1) and there is also a partial similarity

1 Details about data preprocessing for item-based filtering are given in Section 2.2.2.
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2.2 Item-based nearest neighbor recommendation 19

with Item4 (3, 3, 5, 2). The idea of item-based recommendation is now to simply
look at Alice’s ratings for these similar items. Alice gave a “5” to Item1 and a
“4” to Item4. An item-based algorithm computes a weighted average of these
other ratings and will predict a rating for Item5 somewhere between 4 and 5.

2.2.1 The cosine similarity measure

To find similar items, a similarity measure must be defined. In item-based
recommendation approaches, cosine similarity is established as the standard
metric, as it has been shown that it produces the most accurate results. The
metric measures the similarity between two n-dimensional vectors based on
the angle between them. This measure is also commonly used in the fields of
information retrieval and text mining to compare two text documents, in which
documents are represented as vectors of terms.

The similarity between two items a and b – viewed as the corresponding
rating vectors !a and !b – is formally defined as follows:

sim(!a, !b) = !a · !b
| !a | ∗ | !b |

(2.5)

The · symbol is the dot product of vectors. | !a | is the Euclidian length of
the vector, which is defined as the square root of the dot product of the vector
with itself.

The cosine similarity of Item5 and Item1 is therefore calculated as follows:

sim(I5, I1) = 3 ∗ 3 + 5 ∗ 4 + 4 ∗ 3 + 1 ∗ 1√
32 + 52 + 42 + 12 ∗

√
32 + 42 + 32 + 12

= 0.99 (2.6)

The possible similarity values are between 0 and 1, where values near to 1
indicate a strong similarity. The basic cosine measure does not take the differ-
ences in the average rating behavior of the users into account. This problem is
solved by using the adjusted cosine measure, which subtracts the user average
from the ratings. The values for the adjusted cosine measure correspondingly
range from −1 to +1, as in the Pearson measure.

Let U be the set of users that rated both items a and b. The adjusted cosine
measure is then calculated as follows:

sim(a, b) =
∑

u∈U (ru,a − ru)(ru,b − ru)
√∑

u∈U (ru,a − ru)2
√∑

u∈U (ru,b − ru)2
(2.7)

We can therefore transform the original ratings database and replace the
original rating values with their deviation from the average ratings as shown in
Table 2.2.
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20 2 Collaborative recommendation

Table 2.2. Mean-adjusted ratings database.

Item1 Item2 Item3 Item4 Item5

Alice 1.00 −1.00 0.00 0.00 ?
User1 0.60 −1.40 −0.40 0.60 0.60
User2 0.20 −0.80 0.20 −0.80 1.20
User3 −0.20 −0.20 −2.20 2.80 0.80
User4 −1.80 2.20 2.20 −0.80 −1.80

The adjusted cosine similarity value for Item5 and Item1 for the example is
thus:

0.6 ∗ 0.6+0.2 ∗ 1.2+ (−0.2) ∗ 0.80+ (−1.8) ∗ (−1.8)
√

(0.62 +0.22 + (−0.2)2 + (−1.8)2 ∗
√

0.62 +1.22 +0.82 + (−1.8)2
= 0.80

(2.8)

After the similarities between the items are determined we can predict a
rating for Alice for Item5 by calculating a weighted sum of Alice’s ratings for
the items that are similar to Item5. Formally, we can predict the rating for user
u for a product p as follows:

pred(u, p) =
∑

i∈ratedItems(u) sim(i, p) ∗ ru,i∑
i∈ratedItems(a) sim(i, p)

(2.9)

As in the user-based approach, the size of the considered neighborhood is
typically also limited to a specific size – that is, not all neighbors are taken into
account for the prediction.

2.2.2 Preprocessing data for item-based filtering

Item-to-item collaborative filtering is the technique used by Amazon.com to
recommend books or CDs to their customers. Linden et al. (2003) report on
how this technique was implemented for Amazon’s online shop, which, in
2003, had 29 million users and millions of catalog items. The main problem
with traditional user-based CF is that the algorithm does not scale well for
such large numbers of users and catalog items. Given M customers and N

catalog items, in the worst case, all M records containing up to N items must
be evaluated. For realistic scenarios, Linden et al. (2003) argue that the actual
complexity is much lower because most of the customers have rated or bought
only a very small number of items. Still, when the number of customers M

is around several million, the calculation of predictions in real time is still
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2.2 Item-based nearest neighbor recommendation 21

infeasible, given the short response times that must be obeyed in the online
environment.

For making item-based recommendation algorithms applicable also for large
scale e-commerce sites without sacrificing recommendation accuracy, an ap-
proach based on offline precomputation of the data is typically chosen. The idea
is to construct in advance the item similarity matrix that describes the pairwise
similarity of all catalog items. At run time, a prediction for a product p and user
u is made by determining the items that are most similar to i and by building the
weighted sum of u’s ratings for these items in the neighborhood. The number
of neighbors to be taken into account is limited to the number of items that the
active user has rated. As the number of such items is typically rather small, the
computation of the prediction can be easily accomplished within the short time
frame allowed in interactive online applications.

With respect to memory requirements, a full item similarity matrix for N

items can theoretically have up to N2 entries. In practice, however, the number
of entries is significantly lower, and further techniques can be applied to reduce
the complexity. The options are, for instance, to consider only items that have
a minimum number of co-ratings or to memorize only a limited neighborhood
for each item; this, however, increases the danger that no prediction can be
made for a given item (Sarwar et al. 2001).

In principle, such an offline precomputation of neighborhoods is also pos-
sible for user-based approaches. Still, in practical scenarios the number of
overlapping ratings for two users is relatively small, which means that a few
additional ratings may quickly influence the similarity value between users.
Compared with these user similarities, the item similarities are much more sta-
ble, such that precomputation does not affect the preciseness of the predictions
too much (Sarwar et al. 2001).

Besides different preprocessing techniques used in so-called model-based
approaches, it is an option to exploit only a certain fraction of the rating matrix
to reduce the computational complexity. Basic techniques include subsampling,
which can be accomplished by randomly choosing a subset of the data or by
ignoring customer records that have only a very small set of ratings or that
only contain very popular items. A more advanced and information-theoretic
technique for filtering out the most “relevant” customers was also proposed
by Yu et al. (2003). In general, although some computational speedup can
be achieved with such techniques, the capability of the system to generate
accurate predictions might deteriorate, as these recommendations are based on
less information.

Further model-based and preprocessing-based approaches for complexity
and dimensionality reduction will be discussed in Section 2.4.
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22 2 Collaborative recommendation

2.3 About ratings

Before we discuss further techniques for reducing the computational com-
plexity and present additional algorithms that operate solely on the basis of
a user–item ratings matrix, we present a few general remarks on ratings in
collaborative recommendation approaches.

2.3.1 Implicit and explicit ratings

Among the existing alternatives for gathering users’ opinions, asking for ex-
plicit item ratings is probably the most precise one. In most cases, five-point or
seven-point Likert response scales ranging from “Strongly dislike” to “Strongly
like” are used; they are then internally transformed to numeric values so the
previously mentioned similarity measures can be applied. Some aspects of the
usage of different rating scales, such as how the users’ rating behavior changes
when different scales must be used and how the quality of recommendation
changes when the granularity is increased, are discussed by Cosley et al. (2003).
What has been observed is that in the movie domain, a five-point rating scale
may be too narrow for users to express their opinions, and a ten-point scale
was better accepted. An even more fine-grained scale was chosen in the joke
recommender discussed by Goldberg et al. (2001), where a continuous scale
(from −10 to +10) and a graphical input bar were used. The main arguments
for this approach are that there is no precision loss from the discretization,
user preferences can be captured at a finer granularity, and, finally, end users
actually “like” the graphical interaction method, which also lets them express
their rating more as a “gut reaction” on a visual level.

The question of how the recommendation accuracy is influenced and what
is the “optimal” number of levels in the scaling system is, however, still open,
as the results reported by Cosley et al. (2003) were developed on only a small
user basis and for a single domain.

The main problems with explicit ratings are that such ratings require addi-
tional efforts from the users of the recommender system and users might not
be willing to provide such ratings as long as the value cannot be easily seen.
Thus, the number of available ratings could be too small, which in turn results
in poor recommendation quality.

Still, Shafer et al. (2006) argue that the problem of gathering explicit ratings
is not as hard as one would expect because only a small group of “early
adopters” who provide ratings for many items is required in the beginning to
get the system working.
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2.3 About ratings 23

Besides that, one can observe that in the last few years in particular, with
the emergence of what is called Web 2.0, the role of online communities has
changed and users are more willing to contribute actively to their community’s
knowledge. Still, in light of these recent developments, more research focusing
on the development of techniques and measures that can be used to persuade
the online user to provide more ratings is required.

Implicit ratings are typically collected by the web shop or application in
which the recommender system is embedded. When a customer buys an item,
for instance, many recommender systems interpret this behavior as a positive
rating. The system could also monitor the user’s browsing behavior. If the user
retrieves a page with detailed item information and remains at this page for a
longer period of time, for example, a recommender could interpret this behavior
as a positive orientation toward the item.

Although implicit ratings can be collected constantly and do not require
additional efforts from the side of the user, one cannot be sure whether the user
behavior is correctly interpreted. A user might not like all the books he or she
has bought; the user also might have bought a book for someone else. Still, if a
sufficient number of ratings is available, these particular cases will be factored
out by the high number of cases in which the interpretation of the behavior
was right. In fact, Shafer et al. (2006) report that in some domains (such as
personalized online radio stations) collecting the implicit feedback can even
result in more accurate user models than can be done with explicit ratings.

A further discussion of costs and benefits of implicit ratings can be found in
Nichols (1998).

2.3.2 Data sparsity and the cold-start problem

In the rating matrices used in the previous examples, ratings existed for all but
one user–item combination. In real-world applications, of course, the rating
matrices tend to be very sparse, as customers typically provide ratings for (or
have bought) only a small fraction of the catalog items.

In general, the challenge in that context is thus to compute good predictions
when there are relatively few ratings available. One straightforward option for
dealing with this problem is to exploit additional information about the users,
such as gender, age, education, interests, or other available information that
can help to classify the user. The set of similar users (neighbors) is thus based
not only on the analysis of the explicit and implicit ratings, but also on infor-
mation external to the ratings matrix. These systems – such as the hybrid one
mentioned by Pazzani (1999b), which exploits demographic information – are,
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24 2 Collaborative recommendation

User1

Item1 Item2 Item3 Item4

User2 User3

Figure 2.2. Graphical representation of user–item relationships.

however, no longer “purely” collaborative, and new questions of how to acquire
the additional information and how to combine the different classifiers arise.
Still, to reach the critical mass of users needed in a collaborative approach,
such techniques might be helpful in the ramp-up phase of a newly installed
recommendation service.

Over the years, several approaches to deal with the cold-start and data spar-
sity problems have been proposed. Here, we discuss one graph-based method
proposed by Huang et al. (2004) as one example in more detail. The main idea
of their approach is to exploit the supposed “transitivity” of customer tastes
and thereby augment the matrix with additional information2.

Consider the user-item relationship graph in Figure 2.2, which can be in-
ferred from the binary ratings matrix in Table 2.3 (adapted from Huang et al.
(2004)).

A 0 in this matrix should not be interpreted as an explicit (poor) rating, but
rather as a missing rating. Assume that we are looking for a recommendation
for User1. When using a standard CF approach, User2 will be considered a
peer for User1 because they both bought Item2 and Item4. Thus Item3 will
be recommended to User1 because the nearest neighbor, User2, also bought
or liked it. Huang et al. (2004) view the recommendation problem as a graph
analysis problem, in which recommendations are determined by determining
paths between users and items. In a standard user-based or item-based CF
approach, paths of length 3 will be considered – that is, Item3 is relevant
for User1 because there exists a three-step path (User1–Item2–User2–Item3)
between them. Because the number of such paths of length 3 is small in sparse
rating databases, the idea is to also consider longer paths (indirect associations)
to compute recommendations. Using path length 5, for instance, would allow

2 A similar idea of exploiting the neighborhood relationships in a recursive way was proposed by
Zhang and Pu (2007).
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2.3 About ratings 25

Table 2.3. Ratings database for spreading activation
approach.

Item1 Item2 Item3 Item4

User1 0 1 0 1
User2 0 1 1 1
User3 1 0 1 0

for the recommendation also of Item1, as two five-step paths exist that connect
User1 and Item1.

Because the computation of these distant relationships is computationally
expensive, Huang et al. (2004) propose transforming the rating matrix into a
bipartite graph of users and items. Then, a specific graph-exploring approach
called spreading activation is used to analyze the graph in an efficient manner.
A comparison with the standard user-based and item-based algorithms shows
that the quality of the recommendations can be significantly improved with
the proposed technique based on indirect relationships, in particular when the
ratings matrix is sparse. Also, for new users, the algorithm leads to measurable
performance increases when compared with standard collaborative filtering
techniques. When the rating matrix reaches a certain density, however, the
quality of recommendations can also decrease when compared with standard
algorithms. Still, the computation of distant relationships remains computa-
tionally expensive; it has not yet been shown how the approach can be applied
to large ratings databases.

Default voting, as described by Breese et al. (1998), is another technique
of dealing with sparse ratings databases. Remember that standard similarity
measures take into account only items for which both the active user and the
user to be compared will have submitted ratings. When this number is very
small, coincidental rating commonalities and differences influence the similar-
ity measure too much. The idea is therefore to assign default values to items
that only one of the two users has rated (and possibly also to some additional
items) to improve the prediction quality of sparse rating databases (Breese et al.
1998). These artificial default votes act as a sort of damping mechanism that
reduces the effects of individual and coincidental rating similarities.

More recently, another approach to deal with the data sparsity problem was
proposed by Wang et al. (2006). Based on the observation that most collabo-
rative recommenders use only a certain part of the information – either user
similarities or item similarities – in the ratings databases, they suggest com-
bining the two different similarity types to improve the prediction accuracy.
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26 2 Collaborative recommendation

In addition, a third type of information (“similar item ratings made by similar
users”), which is not taken into account in previous approaches, is exploited in
their prediction function. The “fusion” and smoothing of the different predic-
tions from the different sources is accomplished in a probabilistic framework;
first experiments show that the prediction accuracy increases, particularly when
it comes to sparse rating databases.

The cold-start problem can be viewed as a special case of this sparsity
problem (Huang et al. 2004). The questions here are (a) how to make rec-
ommendations to new users that have not rated any item yet and (b) how to
deal with items that have not been rated or bought yet. Both problems can
be addressed with the help of hybrid approaches – that is, with the help of
additional, external information (Adomavicius and Tuzhilin 2005). For the
new-users problem, other strategies are also possible. One option could be to
ask the user for a minimum number of ratings before the service can be used.
In such situations the system could intelligently ask for ratings for items that,
from the viewpoint of information theory, carry the most information (Rashid
et al. 2002). A similar strategy of asking the user for a gauge set of ratings is
used for the Eigentaste algorithm presented by Goldberg et al. (2001).

2.4 Further model-based and preprocessing-based
approaches

Collaborative recommendation techniques are often classified as being either
memory-based or model-based. The traditional user-based technique is said to
be memory-based because the original rating database is held in memory and
used directly for generating the recommendations. In model-based approaches,
on the other hand, the raw data are first processed offline, as described for item-
based filtering or some dimensionality reduction techniques. At run time, only
the precomputed or “learned” model is required to make predictions. Although
memory-based approaches are theoretically more precise because full data
are available for generating recommendations, such systems face problems
of scalability if we think again of databases of tens of millions of users and
millions of items.

In the next sections, we discuss some more model-based recommendation
approaches before we conclude with a recent practical-oriented approach.

2.4.1 Matrix factorization/latent factor models

The Netflix Prize competition, which was completed in 2009, showed that
advanced matrix factorization methods, which were employed by many
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2.4 Further model-based and preprocessing-based approaches 27

participating teams, can be particularly helpful to improve the predictive accu-
racy of recommender systems3.

Roughly speaking, matrix factorization methods can be used in recom-
mender systems to derive a set of latent (hidden) factors from the rating pat-
terns and characterize both users and items by such vectors of factors. In the
movie domain, such automatically identified factors can correspond to obvious
aspects of a movie such as the genre or the type (drama or action), but they
can also be uninterpretable. A recommendation for an item i is made when the
active user and the item i are similar with respect to these factors (Koren et al.
2009).

This general idea of exploiting latent “semantic” factors has been success-
fully applied in the context of information retrieval since the late 1980s. Specif-
ically, Deerwester et al. (1990) proposed using singular value decomposition
(SVD) as a method to discover the latent factors in documents; in information
retrieval settings, this latent semantic analysis (LSA) technique is also referred
to as latent semantic indexing (LSI).

In information retrieval scenarios, the problem usually consists of finding
a set of documents, given a query by a user. As described in more detail in
Chapter 3, both the existing documents and the user’s query are encoded as a
vector of terms. A basic retrieval method could simply measure the overlap of
terms in the documents and the query. However, such a retrieval method does
not work well when there are synonyms such as “car” and “automobile” and
polysemous words such as “chip” or “model” in the documents or the query.
With the help of SVD, the usually large matrix of document vectors can be
collapsed into a smaller-rank approximation in which highly correlated and
co-occurring terms are captured in a single factor. Thus, LSI-based retrieval
makes it possible to retrieve relevant documents even if it does not contain
(many) words of the user’s query.

The idea of exploiting latent relationships in the data and using matrix
factorization techniques such as SVD or principal component analysis was
relatively soon transferred to the domain of recommender systems (Sarwar
et al. 2000b; Goldberg et al. 2001; Canny 2002b). In the next section, we
will show an example of how SVD can be used to generate recommendations;
the example is adapted from the one given in the introduction to SVD-based
recommendation by Grigorik (2007).

3 The DVD rental company Netflix started this open competition in 2006. A $1 million prize was
awarded for the development of a CF algorithm that is better than Netflix’s own recommendation
system by 10 percent; see http://www.netflixprize.com.
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28 2 Collaborative recommendation

Table 2.4. Ratings database for SVD-based
recommendation.

User1 User2 User3 User4

Item1 3 4 3 1
Item2 1 3 2 6
Item3 2 4 1 5
Item4 3 3 5 2

Example for SVD-based recommendation. Consider again our rating matrix
from Table 2.1, from which we remove Alice and that we transpose so we can
show the different operations more clearly (see Table 2.4).

Informally, the SVD theorem (Golub and Kahan 1965) states that a given
matrix M can be decomposed into a product of three matrices as follows, where
U and V are called left and right singular vectors and the values of the diagonal
of ! are called the singular values.

M = U!V T (2.10)

Because the 4 × 4-matrix M in Table 2.4 is quadratic, U , !, and V are also
quadratic 4 × 4 matrices. The main point of this decomposition is that we can
approximate the full matrix by observing only the most important features –
those with the largest singular values. In the example, we calculate U , V , and
! (with the help of some linear algebra software) but retain only the two most
important features by taking only the first two columns of U and V T , see
Table 2.5.

The projection of U and V T in the two-dimensional space (U2, V T
2 ) is shown

in Figure 2.3. Matrix V corresponds to the users and matrix U to the catalog
items. Although in our particular example we cannot observe any clusters of
users, we see that the items from U build two groups (above and below the
x-axis). When looking at the original ratings, one can observe that Item1 and

Table 2.5. First two columns of decomposed matrix and singular values !.

U2

−0.4312452 0.4931501
−0.5327375 −0.5305257
−0.5237456 −0.4052007
−0.5058743 0.5578152

V2

−0.3593326 0.36767659
−0.5675075 0.08799758
−0.4428526 0.56862492
−0.5938829 −0.73057242

!2

12.2215 0
0 4.9282
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User 3

User 4

User 1

User 2

Item 2

Item 3

Item 4
Item 1

Alice

-0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1

-0,8

-0,6

-0,4

-0,2

0,0

0,0

0,2

0,4

0,6

0,8

U

V

Alice

Figure 2.3. SVD-based projection in two-dimensional space.

Item4 received somewhat similar ratings. The same holds for Item2 and Item3,
which are depicted below the x-axis. With respect to the users, we can at least
see that User4 is a bit far from the others.

Because our goal is to make a prediction for Alice’s ratings, we must first
find out where Alice would be positioned in this two-dimensional space.

To find out Alice’s datapoint, multiply Alice’s rating vector [5, 3, 4, 4] by
the two-column subset of U and the inverse of the two-column singular value
matrix !.

Alice2D = Alice × U2 × !−1
2 = [−0.64, 0.30] (2.11)

Given Alice’s datapoint, different strategies can be used to generate a recom-
mendation for her. One option could be to look for neighbors in the compressed
two-dimensional space and use their item ratings as predictors for Alice’s rat-
ing. If we rely again on cosine similarity to determine user similarity, User1
and User2 will be the best predictors for Alice in the example. Again, different
weighting schemes, similarity thresholds, and strategies for filling missing item
ratings (e.g., based on product averages) can be used to fine-tune the prediction.
Searching for neighbors in the compressed space is only one of the possible op-
tions to make a prediction for Alice. Alternatively, the interaction between user
and items in the latent factor space (measured with the cosine similarity metric)
can be used to approximate Alice’s rating for an item (Koren et al. 2009).
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30 2 Collaborative recommendation

Principal component analysis – Eigentaste. A different approach to dimen-
sionality reduction was proposed by Goldberg et al. (2001) and initially applied
to the implementation of a joke recommender. The idea is to preprocess the rat-
ings database using principal component analysis (PCA) to filter out the “most
important” aspects of the data that account for most of the variance. The authors
call their method “Eigentaste,” because PCA is a standard statistical analysis
method based on the computation of the eigenvalue decomposition of a matrix.
After the PCA step, the original rating data are projected along the most rele-
vant of the principal eigenvectors. Then, based on this reduced dataset, users
are grouped into clusters of neighbors, and the mean rating for the items is
calculated. All these (computationally expensive) steps are done offline. At run
time, new users are asked to rate a set of jokes (gauge set) on a numerical scale.
These ratings are transformed based on the principal components, and the cor-
rect cluster is determined. The items with the highest ratings for this cluster are
simply retrieved by a look-up in the preprocessed data. Thus, the computational
complexity at run time is independent of the number of users, resulting in a
“constant time” algorithm. The empirical evaluation and comparison with a
basic nearest-neighborhood algorithm show that in some experiments, Eigen-
taste can provide comparable recommendation accuracy while the computation
time can be significantly reduced. The need for a gauge set of, for example,
ten ratings is one of the characteristics that may limit the practicality of the
approach in some domains.

Discussion. Sarwar et al. (2000a) have analyzed how SVD-based dimension-
ality reduction affects the quality of the recommendations. Their experiments
showed some interesting insights. In some cases, the prediction quality was
worse when compared with memory-based prediction techniques, which can
be interpreted as a consequence of not taking into account all the available infor-
mation. On the other hand, in some settings, the recommendation accuracy was
better, which can be accounted for by the fact that the dimensionality reduction
technique also filtered out some “noise” in the data and, in addition, is capable
of detecting nontrivial correlations in the data. To a great extent the quality of
the recommendations seems to depend on the right choice of the amount of data
reduction – that is, on the choice of the number of singular values to keep in an
SVD approach. In many cases, these parameters can, however, be determined
and fine-tuned only based on experiments in a certain domain. Koren et al.
(2009) talk about 20 to 100 factors that are derived from the rating patterns.

As with all preprocessing approaches, the problem of data updates – how
to integrate newly arriving ratings without recomputing the whole “model”

©
 Ja

nn
ac

h,
 D

ie
tm

ar
; Z

an
ke

r, 
M

ar
ku

s;
 F

el
fe

rn
ig

, A
le

xa
nd

er
; F

rie
dr

ic
h,

 G
er

ha
rd

, S
ep

 3
0,

 2
01

0,
 R

ec
om

m
en

de
r S

ys
te

m
s :

 A
n 

In
tro

du
ct

io
n

C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss
, C

am
br

id
ge

, I
SB

N
: 9

78
05

11
91

68
85



2.4 Further model-based and preprocessing-based approaches 31

again – also must be solved. Sarwar et al. (2002), for instance, proposed a
technique that allows for the incremental update for SVD-based approaches.
Similarly, George and Merugu (2005) proposed an approach based on co-
clustering for building scalable CF recommenders that also support the dynamic
update of the rating database.

Since the early experiments with matrix factorization techniques in recom-
mender systems, more elaborate and specialized methods have been developed.
For instance, Hofmann (2004; Hofmann and Puzicha 1999) proposed to ap-
ply probabilistic LSA (pLSA) a method to discover the (otherwise hidden)
user communities and interest patterns in the ratings database and showed that
good accuracy levels can be achieved based on that method. Hofmann’s pLSA
method is similar to LSA with respect to the goal of identifying hidden rela-
tionships; pLSA is, however, based not on linear algebra but rather on statistics
and represents a “more principled approach which has a solid foundation in
statistics” (Hofmann 1999).

An overview of recent and advanced topics in matrix factorization for rec-
ommender systems can be found in Koren et al. (2009). In this paper, Koren
et al. focus particularly on the flexibility of the model and show, for instance,
how additional information, such as demographic data, can be incorporated;
how temporal aspects, such as changing user preferences, can be dealt with; or
how existing rating bias can be taken into account. In addition, they also
propose more elaborate methods to deal with missing rating data and report
on some insights from applying these techniques in the Netflix prize com-
petition.

2.4.2 Association rule mining

Association rule mining is a common technique used to identify rulelike rela-
tionship patterns in large-scale sales transactions. A typical application of this
technique is the detection of pairs or groups of products in a supermarket that
are often purchased together. A typical rule could be, “If a customer purchases
baby food then he or she also buys diapers in 70 percent of the cases”. When
such relationships are known, this knowledge can, for instance, be exploited
for promotional and cross-selling purposes or for design decisions regarding
the layout of the shop.

This idea can be transferred to collaborative recommendation – in other
words, the goal will be to automatically detect rules such as “If user X liked both
item1 and item2, then X will most probably also like item5.” Recommendations
for the active user can be made by evaluating which of the detected rules
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32 2 Collaborative recommendation

apply – in the example, checking whether the user liked item1 and item2 – and
then generating a ranked list of proposed items based on statistics about the
co-occurrence of items in the sales transactions.

We can describe the general problem more formally as follows, using the
notation from Sarwar et al. (2000b). A (sales) transaction T is a subset of the
set of available products P = {p1, . . . , pm} and describes a set of products that
have been purchased together. Association rules are often written in the form
X ⇒ Y , with X and Y being both subsets of P and X ∩ Y = ∅. An association
rule X ⇒ Y (e.g., baby-food ⇒ diapers) expresses that whenever the elements
of X (the rule body) are contained in a transaction T , it is very likely that the
elements in Y (the rule head) are elements of the same transaction.

The goal of rule-mining algorithms such as Apriori (Agrawal and Srikant
1994) is to automatically detect such rules and calculate a measure of quality
for those rules. The standard measures for association rules are support and
confidence. The support of a rule X ⇒ Y is calculated as the percentage of
transactions that contain all items of X ∪ Y with respect to the number of overall
transactions (i.e., the probability of co-occurrence of X and Y in a transaction).
Confidence is defined as the ratio of transactions that contain all items of X ∪ Y

to the number of transactions that contain only X – in other words, confidence
corresponds to the conditional probability of Y given X.

More formally,

support = number of transactions containing X ∪ Y

number of transactions
(2.12)

confidence = number of transactions containing X ∪ Y
number of transactions containing X

(2.13)

Let us consider again our small rating matrix from the previous section to
show how recommendations can be made with a rule-mining approach. For
demonstration purposes we will simplify the five-point ratings and use only a
binary “like/dislike” scale. Table 2.6 shows the corresponding rating matrix;
zeros correspond to “dislike” and ones to “like.” The matrix was derived from
Table 2.2 (showing the mean-adjusted ratings). It contains a 1 if a rating was
above a user’s average and a 0 otherwise.

Standard rule-mining algorithms can be used to analyze this database and
calculate a list of association rules and their corresponding confidence and
support values. To focus only on the relevant rules, minimum threshold values
for support and confidence are typically defined, for instance, through experi-
mentation.
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2.4 Further model-based and preprocessing-based approaches 33

Table 2.6. Transformed ratings database for rule mining.

Item1 Item2 Item3 Item4 Item5

Alice 1 0 0 0 ?
User1 1 0 0 1 1
User2 1 0 1 0 1
User3 0 0 0 1 1
User4 0 1 1 0 0

In the context of collaborative recommendation, a transaction could be
viewed as the set of all previous (positive) ratings or purchases of a customer.
A typical association that should be analyzed is the question of how likely it is
that users who liked Item1 will also like Item5 (Item1⇒ Item5). In the example
database, the support value for this rule (without taking Alice’s ratings into
account) is 2/4; confidence is 2/2.

The calculation of the set of interesting association rules with a sufficiently
high value for confidence and support can be performed offline. At run time,
recommendations for user Alice can be efficiently computed based on the
following scheme described by Sarwar et al. (2000b):

(1) Determine the set of X ⇒ Y association rules that are relevant for Alice –
that is, where Alice has bought (or liked) all elements from X. Because
Alice has bought Item1, the aforementioned rule is relevant for Alice.

(2) Compute the union of items appearing in the consequent Y of these asso-
ciation rules that have not been purchased by Alice.

(3) Sort the products according to the confidence of the rule that predicted
them. If multiple rules suggested one product, take the rule with the highest
confidence.

(4) Return the first N elements of this ordered list as a recommendation.

In the approach described by Sarwar et al. (2000b), only the actual purchases
(“like” ratings) were taken into account – the system does not explicitly handle
“dislike” statements. Consequently, no rules are inferred that express that, for
example, whenever a user liked Item2 he or she would not like Item3, which
could be a plausible rule in our example.

Fortunately, association rule mining can be easily extended to also handle
categorical attributes so both “like” and “dislike” rules can be derived from the
data. Lin et al. (2002; Lin 2000), for instance, propose to transform the usual
numerical item ratings into two categories, as shown in the example, and then to
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34 2 Collaborative recommendation

map ratings to “transactions” in the sense of standard association rule mining
techniques. The detection of rules describing relationships between articles
(“whenever item2 is liked . . .”) is only one of the options; the same mechanism
can be used to detect like and dislike relationships between users, such as
“90 percent of the articles liked by user A and user B are also liked by user C.”

For the task of detecting the recommendation rules, Lin et al. (2002) propose
a mining algorithm that takes the particularities of the domain into account and
specifically searches only for rules that have a certain target item (user or article)
in the rule head. Focusing the search for rules in that way not only improves the
algorithm’s efficiency but also allows for the detection of rules for infrequently
bought items, which could be filtered out in a global search because of their
limited support value. In addition, the algorithm can be parameterized with
lower and upper bounds on the number of rules it should try to identify.

Depending on the mining scenario, different strategies for determining the
set of recommended items can be used. Let us assume a scenario in which
associations between customers instead of items are mined. An example of a
detected rule would therefore be “If User1 likes an item, and User2 dislikes
the item, Alice (the target user) will like the item.”

To determine whether an item will be liked by Alice, we can check, for each
item, whether the rule “fires” for the item – that is, if User1 liked it and User2
disliked it. Based on confidence and support values of these rules, an overall
score can be computed for each item as follows (Lin et al. 2002):

scoreitemi
=

∑

rules recommending itemi

(supportrule ∗ confidencerule) (2.14)

If this overall item score surpasses a defined threshold value, the item will
be recommended to the target user. The determination of a suitable threshold
was done by Lin et al. (2002) based on experimentation.

When item (article) associations are used, an additional cutoff parameter
can be determined in advance that describes some minimal support value. This
cutoff not only reduces the computational complexity but also allows for the
detection of rules for articles that have only a very few ratings.

In the experiments reported by Lin et al. (2002), a mixed strategy was imple-
mented that, as a default, not only relies on the exploitation of user associations
but also switches to article associations whenever the support values of the
user association rules are below a defined threshold. The evaluation shows that
user associations generally yield better results than article associations; article
associations can, however, be computed more quickly. It can also be observed
from the experiments that a limited number of rules is sufficient for generating
good predictions and that increasing the number of rules does not contribute
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2.4 Further model-based and preprocessing-based approaches 35

any more to the prediction accuracy. The first observation is interesting because
it contrasts the observation made in nearest-neighbor approaches described ear-
lier in which item-to-item correlation approaches have shown to lead to better
results.

A comparative evaluation finally shows that in the popular movie domain, the
rule-mining approach outperforms other algorithms, such as the one presented
by Billsus and Pazzani (1998a), with respect to recommendation quality. In
another domain – namely, the recommendation of interesting pages for web
users, Fu et al. (2000), also report promising results for using association rules
as a mechanism for predicting the relevance of individual pages. In contrast to
many other approaches, they do not rely on explicit user ratings for web pages
but rather aim to automatically store the navigation behavior of many users in
a central repository and then to learn which users are similar with respect to
their interests. More recent and elaborate works in that direction, such as those
by Mobasher et al. (2001) or Shyu et al. (2005), also rely on web usage data
and association rule mining as core mechanisms to predict the relevance of web
pages in the context of adaptive user interfaces and web page recommendations.

2.4.3 Probabilistic recommendation approaches

Another way of making a prediction about how a given user will rate a certain
item is to exploit existing formalisms of probability theory4.

A first, and very simple, way to implement collaborative filtering with a
probabilistic method is to view the prediction problem as a classification prob-
lem, which can generally be described as the task of “assigning an object to
one of several predefined categories” (Tan et al. 2006). As an example of a
classification problem, consider the task of classifying an incoming e-mail
message as spam or non-spam. In order to automate this task, a function has
to be developed that defines – based, for instance, on the words that occur in
the message header or content – whether the message is classified as a spam
e-mail or not. The classification task can therefore be seen as the problem of
learning this mapping function from training examples. Such a function is also
informally called the classification model.

One standard technique also used in the area of data mining is based on
Bayes classifiers. We show, with a simplified example, how a basic probabilistic
method can be used to calculate rating predictions. Consider a slightly different

4 Although the selection of association rules, based on support and confidence values, as described
in the previous section is also based on statistics, association rule mining is usually not classified
as a probabilistic recommendation method.
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36 2 Collaborative recommendation

Table 2.7. Probabilistic models: the rating database.

Item1 Item2 Item3 Item4 Item5

Alice 1 3 3 2 ?
User1 2 4 2 2 4
User2 1 3 3 5 1
User3 4 5 2 3 3
User4 1 1 5 2 1

ratings database (see Table 2.7). Again, a prediction for Alice’s rating of Item5
is what we are interested in.

In our setting, we formulate the prediction task as the problem of calculating
the most probable rating value for Item5, given the set of Alice’s other ratings
and the ratings of the other users. In our method, we will calculate conditional
probabilities for each possible rating value given Alice’s other ratings, and then
select the one with the highest probability as a prediction5.

To predict the probability of rating value 1 for Item5 we must calculate the
conditional probability P (Item5 = 1|X), with X being Alice’s other ratings:
X = (Item1 = 1, Item2 = 3, Item3 = 3, Item4 = 2).

For the calculation of this probability, the Bayes theorem is used, which
allows us to compute this posterior probability P (Y |X) through the class-
conditional probability P (X|Y ), the probability of Y (i.e., the probability of
a rating value 1 for Item5 in the example), and the probability of X, more
formally

P (Y |X) = P (X|Y ) × P (Y )
P (X)

(2.15)

Under the assumption that the attributes (i.e., the ratings users) are condi-
tionally independent, we can compute the posterior probability for each value
of Y with a naive Bayes classifier as follows, d being the number of attributes
in each X:

P (Y |X) =
∏d

i=1 P (Xi |Y ) × P (Y )
P (X)

(2.16)

In many domains in which naive Bayes classifiers are applied, the assump-
tion of conditional independence actually does not hold, but such classifiers
perform well despite this fact.

5 Again, a transformation of the ratings database into “like” and “dislike” statements is possible
(Miyahara and Pazzani 2000).

©
 Ja

nn
ac

h,
 D

ie
tm

ar
; Z

an
ke

r, 
M

ar
ku

s;
 F

el
fe

rn
ig

, A
le

xa
nd

er
; F

rie
dr

ic
h,

 G
er

ha
rd

, S
ep

 3
0,

 2
01

0,
 R

ec
om

m
en

de
r S

ys
te

m
s :

 A
n 

In
tro

du
ct

io
n

C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss
, C

am
br

id
ge

, I
SB

N
: 9

78
05

11
91

68
85



2.4 Further model-based and preprocessing-based approaches 37

As P (X) is a constant value, we can omit it in our calculations. P (Y ) can be
estimated for each rating value based on the ratings database: P(Item5=1) =
2/4 (as two of four ratings for Item5 had the value 1), P(Item5=2)=0, and
so forth. What remains is the calculation of all class-conditional probabilities
P (Xi |Y ):

P(X|Item5=1) = P(Item1=1|Item5=1) × P(Item2=3|Item5=1)
× P(Item3=3|Item5=1) × P(Item4=2|Item5=1)

= 2/2 × 1/2 × 1/2 × 1/2
= 0.125

P(X|Item5=2) = P(Item1=1|Item5=2) × P(Item2=3|Item5=2)
× P(Item3=3|Item5=2) × P(Item4=2|Item5=2)

= 0/0 × · · · × · · · × · · ·
= 0

Based on these calculations, given that P(Item5=1) = 2/4 and omitting
the constant factor P (X) in the Bayes classifier, the posterior probability of a
rating value 1 for Item5 is P (Item5 = 1|X) = 2/4 × 0.125 = 0.0625. In the
example ratings database, P(Item5=1) is higher than all other probabilities,
which means that the probabilistic rating prediction for Alice will be 1 for
Item5. One can see in the small example that when using this simple method
the estimates of the posterior probabilities are 0 if one of the factors is 0 and
that in the worst case, a rating vector cannot be classified. Techniques such
as using the m-estimate or Laplace smoothing are therefore used to smooth
conditional probabilities, in particular for sparse training sets. Of course, one
could also – as in the association rule mining approach – use a preprocessed
rating database and use “like” and “dislike” ratings and/or assign default ratings
only to missing values.

The simple method that we developed for illustration purposes is computa-
tionally complex, does not work well with small or sparse rating databases, and
will finally lead to probability values for each rating that differ only very slightly
from each other. More advanced probabilistic techniques are thus required.

The most popular approaches that rely on a probabilistic model are based
on the idea of grouping similar users (or items) into clusters, a technique
that, in general, also promises to help with the problems of data sparsity and
computational complexity.

The naı̈ve Bayes model described by Breese et al. (1998) therefore includes
an additional unobserved class variable C that can take a small number of
discrete values that correspond to the clusters of the user base. When, again,
conditional independence is assumed, the following formula expresses the
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38 2 Collaborative recommendation

probability model (mixture model):

P (C = c, v1, . . . , vn) = P (C = c)
n∏

i=1

P (vi |C = c) (2.17)

where P (C = c, v1, . . . , vn) denotes the probability of observing a full set of
values for an individual of class c. What must be derived from the training
data are the probabilities of class membership, P (C = c), and the conditional
probabilities of seeing a certain rating value when the class is known, P (vi |C =
c). The problem that remains is to determine the parameters for a model and
estimate a good number of clusters to use. This information is not directly
contained in the ratings database but, fortunately, standard techniques in the
field, such as the expectation maximization algorithm (Dempster et al. 1977),
can be applied to determine the model parameters.

At run time, a prediction for a certain user u and an item i can be made based
on the probability of user u falling into a certain cluster and the probability
of liking item i when being in a certain cluster given the user’s ratings; see
Ungar and Foster (1998) for more details on model estimation for probabilistic
clustering for collaborative filtering.

Other methods for clustering can be applied in the recommendation domain
to for instance, reduce the complexity problem. Chee et al. (2001), for example,
propose to use a modified k-means clustering algorithm to partition the set of
users in homogeneous or cohesive groups (clusters) such that there is a high
similarity between users with respect to some similarity measure in one cluster
and the interpartition similarity is kept at a low level. When a rating prediction
has to be made for a user at run time, the system determines the group of the
user and then takes the ratings of only the small set of members of this group
into account when computing a weighted rating value. The performance of such
an algorithm depends, of course, on the number of groups and the respective
group size. Smaller groups are better with respect to run-time performance;
still, when groups are too small, the recommendation accuracy may degrade.
Despite the run-time savings that can be achieved with this technique, such
in-memory approaches do not scale for really large databases. A more recent
approach that also relies on clustering users with the same tastes into groups
with the help of k-means can be found in Xue et al. (2005).

Coming back to the probabilistic approaches, besides such naive Bayes
approaches, Breese et al. (1998) also propose another form of implementing
a Bayes classifier and modeling the class-conditional probabilities based on
Bayesian belief networks. These networks allow us to make existing depen-
dencies between variables explicit and encode these relationships in a directed
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2.4 Further model-based and preprocessing-based approaches 39

acyclic graph. Model building thus first requires the system to learn the struc-
ture of the network (see Chickering et al. 1997) before the required conditional
probabilities can be estimated in a second step.

The comparison of the probabilistic methods with other approaches, such
as a user-based nearest-neighbor algorithm, shows that the technique based
on Bayesian networks slightly outperforms the other algorithms in some test
domains, although not in all. In a summary over all datasets and evaluation
protocols, the Bayesian network method also exhibits the best overall perfor-
mance (Breese et al. 1998). For some datasets, however – as in the popular
movie domain – the Bayesian approach performs significantly worse than a
user-based approach extended with default voting, inverse user frequency, and
case amplification.

In general, Bayesian classification methods have the advantages that indi-
vidual noise points in the data are averaged out and that irrelevant attributes
have little or no impact on the calculated posterior probabilities (Tan et al.
2006). Bayesian networks have no strong trend of overfitting the model – that
is, they can almost always learn appropriately generalized models, which leads
to good predictive accuracy. In addition, they can also be used when the data
are incomplete.

As a side issue, the run-time performance of the probabilistic approaches de-
scribed herein is typically much better than that for memory-based approaches,
as the model itself is learned offline and in advance. In parallel, Breese et al.
(1998) argue that probabilistic approaches are also favorable with respect to
memory requirements, partly owing to the fact that the resulting belief networks
remain rather small.

An approach similar to the naive Bayes method of Breese et al. (1998) is
described by Chen and George (1999), who also provide more details about the
treatment of missing ratings and how users can be clustered based on the in-
troduction of a hidden (latent) variable to model group membership. Miyahara
and Pazzani (2000), propose a comparably straightforward but effective collab-
orative filtering technique based on a simple Bayes classifier and, in particular,
also discuss the aspect of feature selection, a technique commonly used to
leave out irrelevant items (features), improve accuracy, and reduce computation
time.

A more recent statistical method that uses latent class variables to discover
groups of similar users and items is that proposed by Hofmann (2004; Hofmann
and Puzicha 1999), and it was shown that further quality improvements can be
achieved when compared with the results of Breese et al. (1998). This method
is also employed in Google’s news recommender, which will be discussed
in the next section. A recent comprehensive overview and comparison of
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40 2 Collaborative recommendation

different probabilistic approaches and mixture models can be found in Jin
et al. (2006).

Further probabilistic approaches are described by Pennock et al. (2000) and
Yu et al. (2004), both aiming to combine the ideas and advantages of model-
based and memory-based recommendations in a probabilistic framework. Yu
et al. (2004) develop what they call a “memory-based probabilistic framework
for collaborative filtering”. As a framework, it is particularly designed to ac-
commodate extensions for particular challenges such as the new user problem
or the problem of selecting a set of peer users from the ratings database; all these
extensions are done in a principled, probabilistic way. The new user problem
can be addressed in this framework through an active learning approach – that
is, by asking a new user to rate a set of items as also proposed by Goldberg et al.
(2001). The critical task of choosing the items that the new user will hopefully
be able to rate is done on a decision-theoretic and probabilistic basis. Moreover,
it is also shown how the process of generating and updating the profile space,
which contains the most “informative” users in the user database and which is
constructed to reduce the computational complexity, can be embedded in the
same probabilistic framework. Although the main contribution, as the authors
state it, is the provision of a framework that allows for extensions on a sound
probabilistic basis, their experiments show that with the proposed techniques,
comparable or superior prediction accuracy can be achieved when compared,
for instance, with the results reported for probabilistic methods described by
Breese et al. (1998).

2.5 Recent practical approaches and systems

Our discussion so far has shown the broad spectrum of different techniques
that can, in principle, be used to generate predictions and recommendations
based on the information from a user–item rating matrix. We can observe that
these approaches differ not only with respect to their recommendation quality
(which is the main goal of most research efforts) but also in the complex-
ity of the algorithms themselves. Whereas the first memory-based algorithms
are also rather straightforward with respect to implementation aspects, oth-
ers are based on sophisticated (preprocessing and model-updating) techniques.
Although mathematical software libraries are available for many methods,
their usage requires in-depth mathematical expertise,6 which may hamper the

6 Such expertise is required, in particular, when the used approach is computationally complex
and the algorithms must be applied in an optimized way.
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2.5 Recent practical approaches and systems 41

Table 2.8. Slope One prediction for
Alice and Item5 = 2 + (2 − 1) = 3.

Item1 Item5

Alice 2 ?
User1 1 2

practical usage of these approaches, in particular for small-sized businesses. In
a recent paper, Lemire and Maclachlan (2005) therefore proposed a new and
rather simple recommendation technique that, despite its simplicity, leads to
reasonable recommendation quality. In addition to the goal of easy implemen-
tation for “an average engineer”, their Slope One prediction schemes should
also support on-the-fly data updates and efficient run-time queries. We discuss
this method, which is in practical use on several web sites, in the next section.

In general, the number of publicly available reports on real-world commer-
cial recommender systems (large scale or not) is still limited. In a recent paper,
Das et al. (2007), report in some detail on the implementation of Google’s news
personalization engine that was designed to provide personalized recommen-
dations in real time. A summary of this approach concludes the section and
sheds light on practical aspects of implementing a large-scale recommender
system that has an item catalog consisting of several million news articles and
is used by millions of online users.

2.5.1 Slope One predictors

The original idea of “Slope One” predictors is simple and is based on what
the authors call a “popularity differential” between items for users. Consider
the following example (Table 2.8), which is based on a pairwise comparison of
how items are liked by different users.

In the example, User1 has rated Item1 with 1 and Item5 with 2. Alice has
rated Item1 with 2. The goal is to predict Alice’s rating for Item5. A simple
prediction would be to add to Alice’s rating for Item1 the relative difference
of User1’s ratings for these two items: p(Alice, Item5) = 2 + (2 − 1) = 3. The
ratings database, of course, consists of many such pairs, and one can take the
average of these differences to make the prediction.

In general, the problem consists of finding functions of the form f (x) =
x + b (that is why the name is “Slope One”) that predict, for a pair of items,
the rating for one item from the rating of the other one.
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42 2 Collaborative recommendation

Table 2.9. Slope One prediction: a more
detailed example.

Item1 Item2 Item3

Alice 2 5 ?
User1 3 2 5
User2 4 3

Let us now look at the following slightly more complex example (Table 2.9)
in which we search for a prediction for Alice for Item3.7

There are two co-ratings of Item1 and Item3. One time Item3 is rated two
points higher (5 − 3 = 2), and the other time one point lower, than Item1 (3 −
4 = −1). The average distance between these items is thus (2 + (−1))/2 = 0.5.
There is only one co-rating of Item3 and Item2 and the distance is (5 − 2) = 3.
The prediction for Item3 based on Item1 and Alice’s rating of 2 would therefore
be 2 + 0.5 = 2.5. Based on Item2, the prediction is 5 + 3 = 8. An overall
prediction can now be made by taking the number of co-ratings into account to
give more weight to deviations that are based on more data:

pred(Alice, Item3) = 2 × 2.5 + 1 × 8
2 + 1

= 4.33 (2.18)

In detail, the approach can be described as follows, using a slightly different
notation (Lemire and Maclachlan 2005) that makes the description of the
calculations simpler. The whole ratings database shall be denoted R, as usual.
The ratings of a certain user are contained in an incomplete array u, ui being
u’s ratings for item i. Lemire and Maclachlan (2005) call such an array an
evaluation, and it corresponds to a line in the matrix R. Given two items j and
i, let Sj,i(R) denote the set of evaluations that contain both ratings for i and j –
that is, the lines that contain the co-ratings. The average deviation dev of two
items i and j is then calculated as follows:

devj,i =
∑

(uj ,ui )∈Sj,i (R)

uj − ui

|Sj,i(R)|
(2.19)

As shown in the example, from every co-rated item i we can make a pre-
diction for item j and user u as devj,i + ui . A simple combination of these

7 Adapted from Wikipedia (2008).
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2.5 Recent practical approaches and systems 43

individual predictions would be to compute the average over all co-rated items:

pred(u, j ) =
∑

i∈Relevant(u,j )(devj,i + ui)

|Relevant(u, j )|
(2.20)

The function Relevant(u, j ) denotes the set of relevant items – those that
have at least one co-rating with j by user u. In other words, Relevant(u, j ) =
{i|i ∈ S(u), i "= j, |Sj,i(R)| > 0}, where S(u) denotes the set of entries in u

that contain a rating. This formula can be simplified in realistic scenarios and
sufficiently dense datasets to Relevant(u, j ) = S(u) − {j} when j ∈ S(u).

The intuitive problem of that basic scheme is that it does not take the number
of co-rated items into account, although it is obvious that a predictor will be
better if there is a high number of co-rated items. Thus, the scheme is extended
in such a way that it weights the individual deviations based on the number of
co-ratings as follows:

pred(u, j ) =
∑

i∈S(u)−{j}(devj,i + ui) ∗ |Sj,i(R)|
∑

i∈S(u)−{j} ∗|Sj,i(R)|
(2.21)

Another way of enhancing the basic prediction scheme is to weight the
deviations based on the “like and dislike” patterns in the rating database
(bipolar scheme). To that purpose, when making a prediction for user j , the
relevant item ratings (and deviations) are divided into two groups, one group
containing the items that were liked by both users and one group containing
items both users disliked. A prediction is made by combining these deviations.
The overall effect is that the scheme takes only those ratings into account in
which the users agree on a positive or negative rating. Although this might
seem problematic with respect to already sparse ratings databases, the desired
effect is that the prediction scheme “predicts nothing from the fact that user A

likes item K and user B dislikes the same item K” (Lemire and Maclachlan
2005).

When splitting the ratings into like and dislike groups, one should also take
the particularities of real-world rating databases into account. In fact, when
given a five-point scale (1–5), it can be observed that in typical datasets around
70 percent of the ratings are above the theoretical average of 3. This indicates
that, in general, users either (a) tend to provide ratings for items that they like
or (b) simply have a tendency to give rather high ratings and interpret a value
of 3 to be a rather poor rating value. In the bipolar prediction scheme discussed
here, the threshold was thus set to the average rating value of a user instead of
using an overall threshold.

An evaluation of the Slope One predictors on popular test databases re-
vealed that the quality of recommendations (measured by the usual metrics; see
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44 2 Collaborative recommendation

Section 7.4.2) is comparable with the performance of existing approaches, such
as collaborative filtering based on Pearson correlation and case amplification.
The extensions of the basic scheme (weighted predictors, bipolar scheme) also
result in a performance improvement, although these improvements remain
rather small (1% to 2%) and are thus hardly significant.

Overall, despite its simplicity, the proposed item-based and ratings-based
algorithm shows a reasonable performance on popular rating databases. In ad-
dition, the technique supports both dynamic updates of the predictions when
new ratings arrive and efficient querying at run time (in exchange for increased
memory requirements, of course). In the broader context, such rather simple
techniques and the availability of small, open-source libraries in different pop-
ular programming languages can help to increase the number of real-world
implementations of recommender systems.

From an scientific perspective, however, a better understanding and more
evaluations on different datasets are required to really understand the particular
characteristics of the proposed Slope One algorithms in different applications
and settings.

2.5.2 The Google News personalization engine

Google News is an online information portal that aggregates news articles from
several thousand sources and displays them (after grouping similar articles) to
signed-in users in a personalized way; see Figure 2.4. The recommendation
approach is a collaborative one and is based on the click history of the active
user and the history of the larger community – that is, a click on a story is inter-
preted as a positive rating. More elaborate rating acquisition and interpretation
techniques are possible, of course; see, for instance, the work of Joachims et al.
(2005).

On the news portal, the recommender system is used to fill one specific
section with a personalized list of news articles. The main challenges are that
(a) the goal is to generate the list in real time, allowing at most one second
for generating the content and (b) there are very frequent changes in the “item
catalog”, as there is a constant stream of new items, whereas at the same time
other articles may quickly become out of date. In addition, one of the goals
is to immediately react to user interaction and take the latest article reads into
account.

Because of the vast number of articles and users and the given response-
time requirements, a pure memory-based approach is not applicable and a
combination of model-based and memory-based techniques is used. The model-
based part is based on two clustering techniques, probabilistic latent semantic
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2.5 Recent practical approaches and systems 45

Figure 2.4. Google News portal.

indexing (PLSI) as proposed by Hofmann (2004), and – as a new proposal –
MinHash as a hashing method used for putting two users in the same cluster
(hash bucket) based on the overlap of items that both users have viewed.
To make this hashing process scalable, both a particular method for finding
the neighbors and Google’s own MapReduce technique for distributing the
computation over several clusters of machines are employed.

The PLSI method can be seen as a “second generation” probabilistic tech-
nique for collaborative filtering that – similar to the idea of the probabilistic
clustering technique of Breese et al. (1998) discussed earlier – aims to identify
clusters of like-minded users and related items. In contrast to the work of Breese
et al. (1998), in which every user belongs to exactly one cluster, in Hofmann’s
approach hidden variables with a finite set of states for every user–item pair
are introduced. Thus, such models can also accommodate the fact that users
may have interests in various topics in parallel. The parameters of the result-
ing mixture model are determined with the standard expectation maximization
(EM) method (Dempster et al. 1977). As this process is computationally very
expensive, with respect to both the number of operations and the amount of
required main memory, an algorithm is proposed for parallelizing the EM com-
putation via MapReduce over several machines. Although this parallelization
can significantly speed up the process of learning the probability distributions,
it is clearly not sufficient to retrain the network in real time when new users or
items appear, because such modifications happen far too often in this domain.
Therefore, for new stories, an approximate version of PLSI is applied that can
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46 2 Collaborative recommendation

be updated in real time. A recommendation score is computed based on cluster-
membership probabilities and per-cluster statistics of the number of clicks for
each story. The score is normalized in the interval [0 . . . 1].

For dealing with new users, the memory-based part of the recommender
that analyzes story “co-visits” is important. A co-visit means that an article has
been visited by the same user within a defined period of time. The rationale of
exploiting such information directly corresponds to an item-based recommen-
dation approach, as described in previous sections. The data, however, are not
preprocessed offline, but a special data structure resembling the adjacency of
clicks is constantly kept up to date. Predictions are made by iterating over the
recent history of the active user and retrieving the neighboring articles from
memory. For calculating the actual score, the weights stored in the adjacency
matrix are taken into account, and the result is normalized on a 0-to-1 interval.

At run time, the overall recommendation score for each item in a defined set
of candidate items is computed as a linear combination of all the scores obtained
by the three methods (MinHash, PLSI, and co-visits). The preselection of an
appropriate set of recommendation candidates can be done based on different
pieces of information, such as language preferences, story freshness, or other
user-specific personalization settings. Alternatively, the click history of other
users in the same cluster could be used to limit the set of candidate items.

The evaluation of this algorithm on different datasets (movies and news arti-
cles) revealed that, when evaluated individually, PLSI performs best, followed
by MinHash and the standard similarity-based recommendation. For live data,
an experiment was made in which the new technique was compared with a
nonpersonalized approach, in which articles were ranked according to their
recent popularity. To compare the approaches, recommendation lists were gen-
erated that interleaved items from one algorithm with the other. The experiment
then measured which items received more clicks by users. Not surprisingly, the
personalized approach did significantly better (around 38%) except for the not-
so-frequent situations in which there were extraordinarily popular stories. The
interesting question of how to weight the scores of the individual algorithms,
however, remains open to some extent.

In general, what can be learned from that report is that if we have a combi-
nation of massive datasets and frequent changes in the data, significant efforts
(with respect to algorithms, engineering, and parallelization) are required such
that existing techniques can be employed and real-time recommendations are
possible. Pure memory-based approaches are not directly applicable and for
model-based approaches, the problem of continuous model updates must be
solved.
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2.6 Discussion and summary 47

What is not answered in the study is the question of whether an approach
that is not content-agnostic would yield better results. We will see in the next
chapter that content-based recommendation techniques – algorithms that base
their recommendations on the document content and explicit or learned user
interests – are particularly suited for problems of that type.

2.6 Discussion and summary

Of all the different approaches to building recommender systems discussed
in this book, CF is the best-researched technique – not only because the first
recommender systems built in the mid-1990s were based on user communities
that rated items, but also because most of today’s most successful online rec-
ommenders rely on these techniques. Early systems were built using memory-
based neighborhood and correlation-based algorithms. Later, more complex
and model-based approaches were developed that, for example, apply tech-
niques from various fields, such as machine learning, information retrieval, and
data mining, and often rely on algebraic methods such as SVD.

In recent years, significant research efforts went into the development of
more complex probabilistic models as discussed by Adomavicius and Tuzhilin
(2005), in particular because the earliest reports of these methods (as in Breese
et al. 1998) indicate that they lead to very accurate predictions.

The popularity of the collaborative filtering subfield of recommender sys-
tems has different reasons, most importantly the fact that real-world benchmark
problems are available and that the data to be analyzed for generating recom-
mendations have a very simple structure: a matrix of item ratings. Thus, the
evaluation of whether a newly developed recommendation technique, or the
application of existing methods to the recommendation problem, outperforms
previous approaches is straightforward, in particular because the evaluation
metrics are also more or less standardized. One can easily imagine that com-
paring different algorithms is not always as easy as with collaborative filtering,
in particular if more knowledge is available than just the simple rating matrix.
Think, for instance, of conversational recommender applications, in which the
user is interactively asked about his or her preferences and in which additional
domain knowledge is encoded.

However, the availability of test databases for CF in different domains
favored the further development of various and more complex CF techniques.
Still, this somehow also narrowed the range of domains on which CF techniques
are actually applied. The most popular datasets are about movies and books,
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48 2 Collaborative recommendation

and many researchers aim to improve the accuracy of their algorithms only
on these datasets. Whether a certain CF technique performs particularly well
in one domain or another is unfortunately beyond the scope of many research
efforts.

In fact, given the rich number of different proposals, the question of which
recommendation algorithm to use under which circumstances is still open, even
if we limit our considerations to purely collaborative approaches. Moreover, the
accuracy results reported on the well-known test datasets do not convey a clear
picture. Many researchers compare their measurements with the already rather
old results from Breese et al. (1998) and report that they can achieve better
results in one or another setting and experiment. A newer basis of comparison
is required, given the dozens of different techniques that have been proposed
over the past decade. Based on such a comparison, a new set of “baseline”
algorithms could help to get a clearer picture.

Viewed from a practical perspective, one can see that item-based CF, as
reported by Linden et al. (2003) and used by Amazon.com, is scalable enough
to cope with very large rating databases and also produces recommendations
of reasonable quality. The number of reports on other commercial implemen-
tations and accompanying technical details (let alone datasets) is unfortunately
also limited, so an industry survey in that direction could help the research com-
munity validate whether and how new proposals make their way into industrial
practice.

In addition, we will see in Chapter 5, which covers hybrid recommendation
approaches, that recommendation algorithms that exploit additional informa-
tion about items or users and combine different techniques can achieve signifi-
cantly better recommendation results than purely collaborative approaches can.
When we observe the trends and developments in the recent past, we can expect
that in the next years more information, both about the catalog items and about
the users, will be available at very low cost, thus favoring combined or hybrid
approaches. The sources of such additional knowledge can be manifold: online
users share more and more information about themselves in social networks
and online communities; companies exchange item information in electronic
form only and increasingly adopt exchange standards including defined prod-
uct classification schemes. Finally, according to the promise of the “Semantic
Web,” such item and community information can easily be automatically ex-
tracted from existing web sources (see, e.g., Shchekotykhin et al. 2007 for an
example of such an approach).

Overall, today’s CF techniques are mature enough to be employed in practi-
cal applications, provided that moderate requirements are fulfilled. Collabora-
tive recommenders can not be applied in every domain: think of a recommender
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2.7 Bibliographical notes 49

system for cars, a domain in which no buying history exists or for which the
system needs a more detailed picture of the users’ preferences. In parallel, CF
techniques require the existence of a user community of a certain size, meaning
that even for the book or movie domains one cannot apply these techniques if
there are not enough users or ratings available.

Alternative approaches to product recommendation that overcome these
limitations in one or the other dimension at the price of, for instance, increased
development and maintenance efforts will be discussed in the next chapters.

2.7 Bibliographical notes

The earliest reports on what we now call recommender systems were published
in the early 1990s. The most cited ones might be the papers on the Tapestry
(Goldberg et al. 1992) and the GroupLens (Resnick et al. 1994) systems, both
first published in 1992. Tapestry was developed at Xerox Parc for mail filtering
and was based on the then rather new idea of exploiting explicit feedback
(ratings and annotations) of other users. One of the first uses of the term
“collaborative filtering” can be found in this paper. The GroupLens8 system was
also developed for filtering text documents (i.e., news articles), but was designed
for use in an open community and introduced the basic idea of automatically
finding similar users in the database for making predictions. The Ringo system,
presented by Shardanand and Maes (1995) describes a music recommender
based on collaborative filtering using Pearson’s correlation measure and the
mean absolute error (MAE) evaluation metric.

As mentioned earlier, the evaluation of Breese et al. (1998) still serves as
an important reference point, in particular as the paper also introduces some
special techniques to the compared algorithms.

The first model-based version of the Jester joke recommender (Goldberg
et al. 2001) that relied on principal component analysis and clustering was
initially proposed around 1999 and is still being developed further (Nathanson
et al. 2007). Hofmann and Puzicha published their influential approach based on
latent class models for collaborative filtering in 1999. Dimensionality reduction
based on SVD was proposed by Sarwar et al. (2000a).

Item-based filtering was analyzed by Sarwar et al. (2001); a short report
about Amazon.com’s patented implementation and experiences are described
by Linden et al. (2003).

8 The homepage of the influential GroupLens research group can be found at http://www.grouplens.
org.
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50 2 Collaborative recommendation

Excellent overview papers on CF, which partially inspired the structure of
this chapter and which can serve as a starting point for further readings, are those
by Schafer et al. (2006) and Anand and Mobasher (2005). Another overview
with an impressive list of references to recent techniques for collaborative
filtering can be found in the article by Adomavicius and Tuzhilin (2005).

Because recommender systems have their roots in various fields, research
papers on collaborative filtering techniques appear in different journals and
conferences. Special issues on recommender systems appeared, for instance,
in the Communications of the ACM (1999), ACM Transactions on Information
Systems (2004), and more recently in the Journal of Electronic Commerce
(2007), IEEE Intelligent Systems (2007), and AI Communications (2008). Many
papers also appear first at dedicated workshops series, such as the Intelligent
Techniques for Web Personalization Workshop and, more recently, at the ACM
Recommender Systems conference.
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