Using Neural Nets to Recognize Handwriting

Jeff Hentschel

Northwestern University
1927 Orrington Ave. Rm. 1318
Evanston, IL 60201-2909
1.513.850.5860

j-hentschel@northwestern.edu

Justin Li

Northwestern University
1927 Orrington Ave. Rm. 1320
Evanston, IL 60201-2909
1.847.332.9448

ninghui48@northwestern.edu

ABSTRACT
Converting printed text into a digital format can have many benefits. This paper will discuss the benefits and shortcomings of using neural nets to classify individual letters stored as images.
1. INTRODUCTION

People are constantly writing notes on paper. These notes range from the minutes of a meeting, a short reminder, a list of things to do, to a long-winded letter to a friend. Yet in this digital age, some may wonder why people still use paper. The answer is simple: an effective substitute for paper has not been invented. Paper is still the champion when it comes to efficiency, affordability, usability, and mobility. Yet having a digital copy of these notes can also present many benefits, most notably the ability to search and organize the notes in myriad ways instantaneously. Being able to search a huge database of written notes saves time and money, two important things in the business world. People need a way to convert handwritten text to digital text, which can be searched and organized however the user wants.

To solve this problem, we propose a system to recognize printed handwriting. This system will use neural networks to classify the lower and upper case alphabet – a total of 52 distinct characters. Neural nets are suited for this task, because of they allow for variation and impreciseness in the data. The same character may be written in different ways, and there is no well defined mapping between a bitmap image of a letter and the character it represents. The ability for neural networks to encode higher level data captures this transformation.
2. METHOD

2.1 Corpus Data

Our dataset consists of 50 complete alphabets, with 52 letters to each alphabet (both lower and upper case letters), totally to 2600 images of letters. These samples were collected from college students aged 18-25 within a span of two weeks. For data collection, we prepared a grid with the letters of the alphabet on the top row, and such that each column of the grid contains different samples of one character. Each subject was asked to complete two rows of the grid, which corresponds to two complete alphabets. The subjects filled in the letters in alphabetical order, printing each letter into its separate cell. The grid was then scanned in at 300 dpi black and white or 200 dpi color, and each letter converted to a 100-by-70 pixel black and white gif. Letters which exceeded the boundaries of the cell were centered digitally, and shrunk to fit if necessary. Whether or not the letters were human recognizable was not considered.
2.2 Neural Network

For this experiment, we used Ian Nabney's and Christopher Bishop's Netlab package, which contains a bundle of neural network functions for the MATLAB environment. Our neural net has 7000 inputs, one for each pixel of the letter image. We decided to include in the network one hidden layer of 70 units, fully connected to the input layer. The output layer of the neural network consists of 52 nodes, also fully connected, with one node for each possible character classification. The classification by the network of an image is taken to be the node with the highest activation, which represents the network's confidence classifying that image as a certain character.

The images were read into Matlab and converted to an array, 1 to represent white and -1 to represent black. The weights to the hidden and output layers, as well as the bias for each node, were initialized to random values.
2.3 Experiment

The corpus was separated into 3 sets - a training set (40 alphabets), a validation set (5 alphabets), and a testing set (5 alphabets). The sets were split according to alphabet to ensure that each set will contain equal samples of every character. The sets were initially selected based on the date of collection, and were then shifted 5 alphabets for each cycle of the 10-fold cross validation process. For the training set, 0.9 and 0.1 were used to indicate that a character does and does not correspond to the image respectively. These values were chosen over 1 and 0 to prevent the weights from requiring infinitely large values.

The network learned on the entire training set using the scaled conjugate gradient method, and was then tested (with the validation set) for its performance. The network was trained to minimize the error on the validation set with a limit of 1000 epochs, to prevent the network from over fitting to the training set. This network was then tested on the testing set, and the result recorded as the performance of the network.

If the neural net is successful, it must be able to classify letters at a better rate than chance guessing. Random guessing would result in a 1/52 chance of correct classification.
3. RESULTS
3.1 Overall Result
The results were disappointing - the network did no better than chance. After 1000 epochs, the network only correctly identified 9 out of 260 characters. This is roughly 1/52, the same as a chance performance. Each of the cycle of the cross validation obtained the same result and had the same trend. There was a slight increase during the training, from correctly classifying 5 characters initially to the final result of 9.
3.2 Analysis
In an attempt to understand the neural network's failure, we looked at the weights assigned to each pixel of the image before and after the training. They are shown in Figure 1. Since the network only had chance performance, it might seem that the network had not learned at all. From the weights, however, we can see that the network had learned some very general aspects of letter recognition. Notice that weights towards the center of the image are brighter, indicating that they contribute more to the activation of each unit. The network has therefore learned that the pixels in the center are somewhat more important in differentiating between characters. This knowledge, however, did not help the network in classifying letters.

[image: image1.png]

[image: image2.png]

There are other reasons that we propose for the neural network's poor performance. One is the usage of black and white images. The images are read in as either 1 or -1, which might have limited the power of the neural network. A follow up can be done on the effects of using grayscale images, and the power of the neural network due to a finer representation of the input. Another area worth exploring is the effect of preprocessing. Pittman in [2] and Singh and Amin in [3] have used various methods to change the representation of the image. Such a transformation may benefit the network by presenting more meaningful elements.
4. CONCLUSION
Our work has shown that black and white images may not be the best choice for optical character recognition. Although we failed to use a feed forward neural network to classify letters as images, neural networks have performed the task successfully before. There is no agreement on how the images should be formatted or preprocessed, nor on the optimal architecture of the network. Further experiments will have to be performed to study what kind of network would learn to recognize letters with the most accuracy.
5. RELATED WORK
The works of Martin et al. [1] and Singh et al. [3] have transformed images of scanned letters into other formats (a set of features and a tree, respectively). Much of traditional OCR is based on extracting features of letters, such as lines and curves, and using those to determine what the letter is. Martin and Pittman, in [1], found that network architecture had little impact on the output, provided that the training set size was large enough. They employed neural nets with 2 hidden layers, and achieved 95% accuracy for letter recognition. Pittman, in another paper called [2], has done work on using neural nets as the classification algorithm. The network takes a set of pen strokes as input, which is recognized by passing images of segmented letters through another neural network. Pittman also proposed a more comprehensive system, which takes into account the context of each letter to allow guessing a missing letter. Singh and Amin in their paper [3] proposed another series of preprocessing for off-line character recognition. Their algorithm first transforms line-like objects so they only have a width of a single pixel. The image is then parsed into a feature tree consisting of loops, curves, and lines, and is finally fed into a neural network.
6. ACKNOWLEDGMENTS
Our thanks to Professor Bryan Pardo for his support and Northwestern University.
7. REFERENCES
[1] G. Martin and J. Pittman. Recognizing Hand-Printed Letters and Digits Using Backpropagation Learning. In Neural Computation, Vol. 3 No. 2. Summer 1991.

[2] J. Pittman. Recognizing Handwritten Text. In Conference on Human Factors in Computing. 1991.

[3] S. Singh and A. Amin. Neural Network Recognition of Hand-printed Characters. In Neural Computing and Applications, Vol 8 No. 1. March 1999

Figure 1: The weights of each pixel of the network before the training (left) and after (right).

PAGE

