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Introduction 
A significant problem with many computational models of 
learning is that they require a cognitively implausible 
number of inputs and training trials.  Recently both Peter 
Stone and Leslie Kaelbling have advocated a push towards 
“no zeros learning,” referring to the size of the dataset.  In 
other words, learning from fewer than ten examples is an 
important goal.  We believe that the ability to do efficient 
learning from a few examples is important in 
computational models of classification. There is clear 
psychological evidence that people do not require hundreds 
or even tens of examples to learn many categories.  This 
phenomenon repeats across domains from spatial language 
learning (e.g., Casasola, 2005) to image classification 
(Gentner and Namy, 1999; Nosofsky et al., 1996).   
 Gentner and Loewenstein (2002) have argued that 
individuals learn categories through a process of 
progressive abstraction, wherein instances of a category 
are compared and the commonalities are abstracted out as a 
direct result of the comparison. In many cases, the 
commonalities resulting from comparison appear to be in 
the relational structure of the cases being compared.  For 
example, in (Gentner and Namy, 1999), subjects who 
compared a bicycle to a skateboard appeared to form a 
generalization based on the functional relationship between 
the wheels of a vehicle and the vehicle’s purpose, rather 
than basic perceptual features, such as the shape and 
number of wheels. 
 This paper discusses SEQL, a computational model of 
progressive abstraction.  We present results from two 
studies that show how SEQL has been successfully applied 
to learning concrete object categories and more abstract 
spatial relations.  In both domains, SEQL is capable of 
learning from a small number of examples, similar to the 
training set sizes that would be required by a person.  We 
conclude by considering further work to more fully 
evaluate SEQL as an approach to category learning. 

The SEQL Model 
We compare structured descriptions using SME, the 
Structure Mapping Engine (Falkenhainer et al., 1989), a 
computational model based on Gentner’s (1983) structure-
mapping theory of analogy and similarity in humans.  
Given two descriptions, a base case and a target case, SME 
computes one or more mappings between the cases by 

aligning their common structure.  One of the key insights 
of structure-mapping theory is that when humans compare 
two cases, they seek out mappings which maximize 
systematicity.  That is, they prefer mappings that align 
interconnected, higher-order relations to more superficial 
mappings, which only align first-order relations and 
attributes.  When SME computes a mapping between two 
cases, it returns a set of correspondences between the 
elements in the two cases, along with a structural 
evaluation score, a numerical estimate of the systematicity 
of the mapping. The structural evaluation score estimates 
the similarity of the cases. 
 We use SEQL (Kuehne et al., 2000; Halstead & Forbus, 
2005) as our model of categorization. In SEQL, category 
learning is modeled as a process of progressive abstraction 
in which comparison promotes generalization and 
abstraction. Each incoming exemplar is compared to 
existing generalizations and stand-alone exemplars using 
SME. If the exemplar is considered “close enough” to a 
current generalization it is merged into that generalization.  
The merging process involves using SME to find 
correspondences between expressions in the new exemplar 
and expressions in the generalization. Generalizations 
consist of all those expressions which have been found in a 
reasonable proportion of their exemplars, along with 
probabilities for each expression that indicate how many of 
the exemplars contained that expression. 
 SEQL is capable of performing unsupervised category 
learning by grouping those exemplars that SME finds to be 
sufficiently similar into the same generalization.  However, 
when SEQL is working from labeled data, it can also 
perform supervised learning by constructing a single 
generalization from the set of exemplars that have been 
given the same label.  
 Our approach to learning using SEQL differs from 
traditional cased-based reasoning (CBR) approaches in two 
ways.  Traditional CBR typically uses application-specific 
matching and retrieval mechanisms whereas SEQL is a 
domain-independent cognitive simulation of human 
processing.  This makes our technique more powerful, as 
we are able to use the same set of cognitively plausible 
processes to model learning across domains and input 
modalities without tailoring our retrieval and matching 
methods to each individual task. Another important 
difference is that CBR typically solves a problem by 
adapting a single, previously seen case.  SEQL, on the 
other hand, constructs generalizations from multiple cases. 



Experiments 

Sketch Recognition 
We believe that an important first step in showing that 
SEQL is a viable model of progressive abstraction is to 
demonstrate that it can be used to build concrete 
generalizations based on sets of highly similar objects. We 
have used sketch recognition as a representative task.  By 
sketch recognition, we mean, given a sketch drawn by a 
person, identifying the object the sketch is meant to 
represent.  Learning by generalization is important in 
sketch recognition because different people, or even the 
same person at different times, may vary in the way they 
draw an object.  A recognition system needs to learn 
classifiers that are sufficiently robust to operate across 
many different sketches of the same object. 
 There have been several previous systems which learn to 
recognize hand-drawn sketches from examples.  However, 
they generally require large numbers of examples to 
construct their sketch classifiers. For example, Liwicki and 
Knipping (2005) built a system for recognizing five 
different symbols typically found in circuit diagrams.  
Despite the simplicity of these symbols, the system was 
trained on 500 images, 50 for each of two possible 
orientations for each symbol.  Sharon and van de Panne 
(2006) built a more general system for recognizing objects 
drawn by a user.  However, their system utilized a training 
set of a comparable size: 20-60 examples of each object.  
While these systems have proven capable in the domains 
for which they were built, they clearly cannot be 
considered reasonable models of human learning. 
 We believe there are two keys to fast learning of 
classifiers for sketch recognition: qualitative sketch 
representations and an efficient learning algorithm.  
Representations need to be qualitative so that the learner 
does not become distracted by irrelevant features that vary 
across even nearly identical sketches.  For example, it 
should not matter whether a particular edge in a sketch is 3 
inches long or 4 inches long, or whether an angle between 
two edges in 60 degrees or 75 degrees.  On the other hand, 
it may matter whether one edge is longer than another, or 
whether two edges are parallel or perpendicular.  In our 
sketch representation scheme, we decompose a sketch into 
edges and then represent these types of relative, qualitative 
relations between edges.  This decreases the necessary 
amount of training considerably, as our system will not 
care if two sketches of an object are drawn at different 
scales, or if the edges in one sketch are slightly rotated. 
 Our representational vocabulary has three types of 
terms: attributes, pairwise relations, and anchoring 
relations. Attributes categorize an individual edge as 

straight, curved, or elliptical. Pairwise relations give basic 
qualitative relationships between pairs of edges. These 
include relative length, relative orientation, whether two 
edges are connected, and whether the connection between 
them is a concave or convex corner. Anchoring relations 
describe relationships between groups of three or more 
edges and contain greater structural depth. There are 
anchoring relations for edges that form a closed shape, 
such as a triangle or quadrilateral, and for edges whose 
endpoints meet to form a three-way junction.  Please see 
(Lovett et al., 2007) for a more detailed description of the 
representation scheme.  
 We use SEQL as our classification learner.  For this 
study, we were primarily concerned with supervised 
learning, since a child may be told the names of objects, 
just as the training sketches for a recognition system can be 
labeled with the appropriate object names.  Given a list of 
objects with the same label, SEQL compares the objects’ 
representations and constructs a generalization consisting 
of the elements of the representations found in most or all 
of the sketches. New sketches can then be classified by 
comparing them to each generalization and returning the 
class name of the generalization which is most similar. We 
calculated similarity by using SME to find a mapping 
between a new exemplar and a known generalization. In 
order to choose the closest match, we normalized our 
similarity scores based on the size of both the exemplar 
and the generalization. 
 In our study (Lovett et al., 2007), we built a library of 
sketches by having 9 subjects each sketch 8 everyday 
objects.  See Figure 1 for example sketches of four of the 
objects. We gave the subjects an illustration of each object 
to use as a guide, to ensure that they would all draw similar 
versions of each object from the same viewpoint.  
However, we told them to only draw those features of the 
objects which they believed were necessary for someone to 
recognize their sketch.  This allowed us to produce a set of 
similar sketches of each object that nonetheless contained a 
high degree of within-object variability, certainly more 
than was found in the previously mentioned studies on 
sketch recognition.  Evaluating our system on this library, 
we found that it was able to learn generalizations from as 
few as two examples of each object that were sufficient for 
classifying the other examples of the objects.  As the 
training set size increased to six examples of each object, 
the system’s performance improved further; it correctly 
classified objects into one of eight classes 77.5% of the 
time. When we ignored confusion between three 
particularly similar classes of objects (cups, buckets, and 
cylinders), performance was at 94.2%. 



 
 

Figure 1. Examples of sketches drawn by subjects 
 

Spatial Language 
Another area of learning where abstraction from observed 
exemplars plays an important role is the learning of spatial 
preposition categories to describe relationships between 
objects.  There has been much psychological research on 
how children learn to abstract away from the specific 
objects in a scene to the more general relationship between 
them (e.g. Casasola, 2005).  There is also a large body of 
work examining which aspects of a scene are important to 
how an adult chooses a preposition to describe a scene.  
For example, the labels of the objects involved (Feist & 
Gentner, 1998), the control relationships between the 
objects (Coventry & Prat-Sala, 2001) and other functional 
relationships between the objects (Carlson-Radvansky et 
al., 1999) have all been shown to play an important role in 
how English prepositions are used. 
 We have shown (Lockwood et al., 2006) that SEQL can 
classify sketches representing the relationships in, on, 
above, below, and left into the correct preposition 
categories.   Not only can it correctly classify the sketches, 
but it can do so with only 50 total exemplars (10 for each 
of the 5 prepositions) and in only one pass over the training 
data.  In contrast, many connectionist models attempting to 
model the same phenomenon require many more stimuli 
and a number of training trials that is simply not 
cognitively plausible.  For example, Regier’s (1995) model 
required a total of 3000 epochs of training on 126 movies 
to learn spatial prepositions.  
 Our study involved only simple sketches of pairs of 
geometric objects (circles, squares, rectangles and 
triangles) representing basic spatial relationships.  These 
input were drawn from psychological studies and other 
computational models. The inputs were sketched using 
sKEA (Forbus, Ferguson & Usher, 2001) the first open-
domain sketch understanding system. sKEA provides users 
with interface tools to conceptually label the glyphs drawn 
with the entity that glyph represents.  These labels are 
drawn from a subset of the Cyc knowledge base 
(containing around 35,000 facts) allowing sKEA to infer a 
large amount of information about the objects in the 
sketch.  The objects in each sketch were named figure and 

ground to clarify the relationship that we were interested in 
(this is consistent with psychological studies where 
subjects are asked to complete the sentence “object A is 
___ object B”).  For example, consider Figure 2 below: 
 

 
This figure shows an example of one of the sketched input 
examples for in.  In this sketch, the circle is named ground 
to specify its role in the preposition, and it is conceptually 
labeled circle.  Similarly the square is named figure and 
conceptually labeled square.  
 In addition to the object information from the knowledge 
base, sKEA computes a set of qualitative spatial 
relationships from the ink in the sketch.  The information 
extracted is meant to approximate high-level visual 
processing.  For example, RCC-8 relations (Cohn, 1996) 
are extracted to determine topological relationships.  In 
Figure 2, sKEA would compute the RCC-8 relationship 
RCC8-nTPP (non-tangential proper part) to describe the 
topological relationship between the circle and the square.  
sKEA would also determine that the glyphs formed a 
contained glyph group with the circle filling the role of 
container and the square as the contained object. Although 
they do not appear in this example, sKEA also computes 
positional relations (i.e. above, to the right of) between all 
pairs of disjoint glyphs in a given sketch. 
 All of this information - both the perceptual information 
from the ink in the sketch and the object knowledge from 
the labels - is combined to form a case representation for 
each input object. Unnecessary information, like 
bookkeeping facts, is automatically filtered out of the cases 
before the experiment is run. The cases are then sent 
through SEQL, which automatically groups them based on 
similarity and forms a generalization for each group.  Our 
goal in doing these experiments is two-fold. We are 
determining whether we can achieve human-like 
classification results automatically, and we are also 
interested in what specific sets of relationships are needed 
to do so.         
 We are currently creating a second sketch library 
containing real-world objects to conduct a second round of 
classification with SEQL.  These objects are also drawn 
from the psychology literature and will allow us to 
examine which functional features are key to determining 
preposition use. Additionally, psychological work has 
addressed the variation in preposition usage across 
languages and cultures (e.g. Bowerman, 1999). We plan to 
also try to learn the prepositions of other languages using 
this new set of sketches.   

Figure 2. An example of the 
sketched input used in the 
spatial language 



Future Work 
There are two main directions in which we will continue 
this work: improvements or enhancements to the SEQL 
system itself and the application of SEQL to new domains. 
SEQL has recently been enhanced by weighting the 
expressions in a generalization based on the proportion of 
exemplars that include that generalization, i.e. their 
probability (Halstead and Forbus, 2005). A further 
enhancement might be to also weight expressions based on 
their probability of appearing in the exemplars for 
alternative classes.  An expression that appears in most 
exemplars for one class but few exemplars for other classes 
has the highest diagnostic strength and thus should receive 
more weight. This approach would be fairly easy to 
implement, but it is not clear that it is a plausible model of 
how people form generalizations. In particular, this 
approach depends on knowing the full set of 
generalizations for all alternative classes when one is 
constructing a generalization.  It may be that people never 
consider all alternatives at once, but instead retrieve a 
small set of possible generalizations on the fly when faced 
with a classification task. These possibilities require further 
consideration. 
 The second direction for future work involves using 
SEQL to construct more abstract categories. Previous work 
(Halstead & Forbus, 2007) has shown that SEQL can be 
used in the more abstract domain of identifying the 
perpetrator of terrorist attacks. However, the initial 
representations used as input to SEQL were already quite 
abstract. In terms of modeling progressive abstraction, we 
would like to explore whether the same concrete, spatial 
representations from which SEQL learned entities 
(sketched objects) and simple relationships (spatial 
prepositions) can also be used to learn more abstract, 
higher-order relations.  These could include mathematical 
concepts like monotonicity or functional concepts like the 
importance of having wheels on a vehicle. By 
demonstrating how analogical comparison might promote 
the construction of generalizations that can become 
increasingly abstract, we hope to put forth not only a 
model of efficient human learning, but also a potential 
explanation for how young children might begin to 
construct abstract concepts. 
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