
2 1094-7167/02/$17.00 © 2002 IEEE IEEE INTELLIGENT SYSTEMS

A I a n d I n f o t a i n m e n t

Applying Inexpensive
AI Techniques to
Computer Games
Aaron Khoo and Robert Zubek, Northwestern University

Modern computer games are highly sophisticated in their simulation of an arti-

ficial game world. They present the player with beautifully rendered environ-

ments, often accompanied by a complex and consistent world physics model. Increas-

ingly, these games also use intelligent characters that can help or hinder the player and

interact with the world and each other. Developers
are using artificial intelligence to develop more
engaging games, and the complexity of this game AI
has become an increasingly important selling point.

However, developing these intelligent systems is
a complicated endeavor. Modern computer games
impose tight computational constraints: graphics and
world physics simulations consume most of a CPU’s
cycles, leaving only a small fraction available for the
AI subsystem to control game agents. Some genres
(such as first-person shooters) feature highly dynamic
environments that update many times per second,
requiring the AI system to be highly responsive to
unexpected events. Thus the AI engine must contin-
uously manage a potentially large number of agents
while using only a small fraction of processor time.

Our approach concentrates on using existing inex-
pensive techniques to develop computer game char-
acters. We used two such techniques to develop
agents for deathmatch games in the first-person
shooter genre. The first system, Groo, engages in
intelligent tactical behavior using a fairly simple and
static behavior network. The second system, trash-
talking 14-year-old moron (tt14m), uses simple text
processing to attempt engagement in the social
aspects of the game Counter-Strike. The techniques
used in both systems are computationally inexpen-
sive and easy to implement, which addresses the con-
straints found in most game development.

Groo
The Groo project attempts to create an efficient

agent, or bot, that plays a first-person-shooter death-

match game in a tactically intelligent manner. Our
objective was to model an average deathmatch
player’s basic tactical skills. Researchers on the
QuakeBot project performed some related work in
this area, with focus on improving the bot’s cognitive
abilities by incorporating predictive capabilities and
learning.1 Our project places heavier emphasis on
efficiency of simple mechanisms.

As we mentioned earlier, the typical modern game
leaves little time for AI processing, so game AI must
be efficient. Our hypothesis is that a reactive system
based on behavior-based techniques can model an
average first-person-shooter player’s skills while still
being efficient enough for game developers.2 We are
not arguing against the eventual addition of more
sophisticated cognition to the bots, but we make two
observations.

First, existing AI techniques that implement com-
plex cognition are computationally expensive rela-
tive to available CPU time. Traditional symbolic rea-
soning systems let you manipulate arbitrarily
sophisticated representations but require highly ser-
ial computations operating on a large database of
logical assertions. Updating and then reasoning over
a symbolic knowledge base for a complex and highly
dynamic environment in the small remaining time
slice is a difficult challenge.

Second, a recent case study seems to suggest that
for bots in a first-person shooter game, decision time
and aim are key to the perception of skill.3 The for-
mer quality is directly tied to our focus on efficient
AI processing; the latter is not a function of higher-
level cognition.

Groo and tt14m are

two systems that use

simple and

computationally

inexpensive AI

mechanisms to

produce engaging

character behavior for

computer games, while

remaining within

performance

constraints of modern

game development.

Behavior-based techniques
The system we constructed uses behavior-

based action selection techniques gleaned
from the robotics field to perform actions in
the game world. These techniques are specif-
ically designed to control systems that reside
in complex worlds where the agent is not the
only change effector. Agents in these envi-
ronments must constantly track incoming
sensory data, and their control systems must
be ready to alter plans and actions to suit the
changing world.

In their purest form, behavior-based systems
divide sensing, modeling, and control among
many parallel task-achieving modules, called
behaviors. Each behavior contains its own
task-specific sensing, modeling, and control
processes. Behaviors tend to be simple enough
to implement as feed-forward circuits or sim-
ple finite-state machines, which lets them com-
pletely recompute sensor, model, and control
decisions from moment to moment. This, in
turn, lets them respond immediately to changes
in the environment. Although behavior-based
systems do not have the representational power
of traditional symbolic systems, they are com-
putationally efficient. These techniques can
generate sufficiently rational behavior in this
domain.

Implementation
Half-Life is a popular first-person shooter

game from Valve Studios. We chose it as our
development platform for Groo because its
game engine is open source, resulting in easy
accessibility and an available online com-
munity of veteran programmers who could
serve as mentors.

Working with the team at Northwestern, we
started by developing a bot software devel-
oper’s kit for Half-Life. Named FlexBot, the
SDK is written in C++, lets designers create
nonplayer characters through a fake client
interface, and provides a set of sensors and
actuators that a designer uses to program the
bots. The sensors and actuators reside in a
dynamic link library that talks to the Half-Life
engine. The designer is responsible for writ-
ing FlexBot control programs—separate
DLLs that talk to the FlexBot interface DLL
(see Figure 1). FlexBot control programs do
not have to adhere to any particular architec-
ture and are intended for use as a general bot
development platform for Half-Life (see
http://flexbot.cs.northwestern.edu).

Generic Robot Language. The behavior-
based control programs we created for Half-

Life bots use the FlexBot SDK’s sensor and
actuator interface. However, we realized that
writing C++ code to implement ever more
complicated finite-state machines would be
unfeasible. We wanted to exploit higher-
level, Lisp-style functional programming
techniques familiar in AI applications.

Therefore, we wrote the bot control pro-
grams in the Generic Robot Language,4 a pro-
gramming language originally designed for
robot development. GRL is a simple, archi-
tecture-neutral language that extends tradi-
tional functional programming techniques to
behavior-based systems. GRL provides a wide
range of constructs for defining data flow
within communicating parallel control sys-
tems and for manipulating it at compile time
using functional programming techniques. We
can concisely write most of the characteris-
tics of popular behavior-based robot architec-
tures as reusable software abstractions in
GRL. This makes it easier to write clear mod-
ular code, to mix and match arbitration mech-
anisms, and to experiment with variations on
existing techniques. We can compile code
written in GRL to many languages, including
Scheme, Basic, and C++.

Architecture. The Groo system’s design fea-
tures actuators provided by the FlexBot
SDK. We can independently control most of
the 11 actuators. For example, the bot can
maneuver using the rotate and translate actua-

tors while simultaneously reloading or
switching weapons.

We ultimately divided the actuators into
two groups: those that do and do not control
navigation. The first group consists of rotate,
translate, and strafe (also known as move-sideways);
the behaviors that control them, navigation
behaviors, maneuver Groo through the world.
Groo senses its immediate surroundings
through nine range sensors arranged in an
evenly spaced semicircle in front of it. Other
sensors include nearest_visible_enemy, nearest_
visible_teammate, distance_to_player, pitch_to_player,
yaw_to_player, and nearest_item.

A significant difference between Groo and
other bot implementations is the lack of
explicit path planning: Groo does not depend
on traditional waypoints to perform naviga-
tion. Figure 2 shows the navigation behaviors

JULY/AUGUST 2002 computer.org/intelligent 3

Bot control DLL

Half-Life
engine

FlexBot sensor
and

actuator interface DLL

Figure 1. The FlexBot architecture design.

Flee Feed

Groo-Navigate

Fight

Run-
Away

Back-
Away

Strafe Find-
Enemy

Charge

Default-
Feed

Stand-&-
Fire

Turn-To-
Sound

No-Good-
Weapons

Wander

Unwedge Goto-
Attractor

Freespace

Move-
Behind-
Object

Goto-
Ladder

Figure 2. Groo navigation behaviors. On every program cycle, the navigation behavior
with the highest activation level wins and gets to dictate the Groo bot’s current rotate,
translate, and strafe values.

that control Groo’s movement through the
world. These behaviors are based on a Tin-
bergen hierarchy and are purely reactive.5 The
Groo bot runs the navigation behavior with
the highest activation level on every program
cycle. Most behaviors are self-explanatory,
but some interesting ones include

• Goto-attractor. Although Groo does not use
traditional waypoints, attractors draw the
bot closer to certain locations such as door-
ways. These attractors act like a potential
field; when Groo is close, it “senses” the
attractor and is pulled toward it. After arriv-
ing at the current attractor, Groo “forgets”
about it for a little while to prevent being
stuck at one location. No explicit connec-
tion exists between the attractors, so we
cannot use them for path planning.

• Move-behind-object. If Groo is being shot and
wants to take cover, move-behind-object
attempts to strafe or move Groo sideways
behind a nearby object.

• Wander (also known as the pick-a-fight
behavior). When Groo has nothing better
to do, it wanders around the map randomly
looking for someone to fight.

The remaining actuators each have their
own set of controlling behaviors—for exam-
ple, the pitch actuator has a set of controlling
behaviors independent of the jump actuator’s

behaviors. Figure 3 defines the shoot actua-
tor’s behavior.

On every program cycle, the outputs from
each set of behaviors are combined into a sin-
gle action vector before being sent to the
FlexBot DLL (see Figure 4). Interestingly,
jump is not considered part of the navigation
behaviors. This is because jump is only used
in particular situations, often during
shootouts (to confuse opponents) or when
the bot is stuck (to leap out of tight spots).
We did not attempt to implement behaviors
where Groo jumps onto tall objects such as
boxes, primarily because of the difficulty in
sensing such objects. Jump is also not coordi-
nated with any of the navigation actuators.

Rather than attempting to control all 11
actuators simultaneously, we divided the
control into separate smaller modules that
are more concise and readable. This modu-
larity also lets us easily shut off superfluous
actuators if necessary during debugging,
which facilitates the development process.
Figure 5 shows the Groo behaviors in action.

Results. Groo’s compiled machine code is
extremely efficient and stable. The bots can
run concurrently with the Half-Life game
server on the same physical machine. We
have successfully run 32 bots (the maximum
number the game engine supports) on one
machine under dedicated server mode and 16
in listen server mode. A dedicated server has
no graphical processing duties; its only job is
to provide a multiplayer game to which exter-
nal players can connect. A listen server, how-
ever, is both server and client, meaning that a
player physically plays on it while it serves
external connections. In the latter case, the
added graphics-processing load created too
much lag as the number of bots in the game
increased. Our test machine was a 450-MHz
Pentium II with 384 Mbytes of RAM and a
16-Mbyte Riva TNT graphics card.

The game engine updates its world model,
including any bots, once every 100 ms. We
observed our bots individually consuming
approximately 0.3 ms per processing cycle,
thus our system only used 0.3 percent of the
CPU’s cycles per second per bot. Ultimately,
the bottleneck was in the game engine, not
the AI; the CPU could potentially run over
100 bots per game. The Groo code base was
approximately 800 lines of GRL code
(including comments) and compiled to 1,200
lines of C++ code. Each instance of the Groo
bot only uses 52 bytes of static data memory
during runtime, yielding a small footprint.

4 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

A I a n d I n f o t a i n m e n t

Figure 5. Groo in action. The two bots in the foreground run the Groo behaviors: the
one on the left has just been eliminated while the one on the right is firing a rocket
launcher. The lines protruding from the latter bot indicate its view field.

Heading

Action

Navigation
behaviors

Rotate

Translate

Strafe

Pitch

Shoot

Fire secondary

Jump

Switch weapon

Reload

Duck

Use

Figure 4. Combining outputs from
individual behavior sets to form a single
action vector that is sent to the Half-Life
engine.

Figure 3. Definition for the shoot actuator
behavior.

shoot = (and facing-enemy?
Not-fire-secondary?
(or weapon-clip-not-empty?

(= current-weapon crowbar))
(or (and enemy-long-range?

Current-weapon-long-range?)
enemy-short-range?
Being-shot?))

The mean time to system failure is also long.
We successfully ran the bots in dedicated
server mode continuously for over two
weeks. During one test run, the variable stor-
ing the number of kills for a bot actually
overflowed.

Anecdotal evidence seems to indicate that
Groo has succeeded in its goal of realistic
behavior to a certain extent. Some experi-
enced Half-Life players (including us) have
tested the Groo bots, and we also demon-
strated the system at IJCAI-2001, where sev-
eral participants played it. Reactions were
positive: most players agreed that the bots
exhibited behaviors that they would associ-
ate with a human player. The Groo system
will be on display as one of the Intelligent
System Demonstrations at AAAI-2002,
where we hope to gather more user data.

tt14m
Although Groo presents the use of effi-

cient mechanisms for tactical engagement,
we now turn to a different aspect of death-
match gameplay—the competition between
individual players.

An important attraction of many compet-
itive computer games lies not in the game-
play’s technical challenges but in the social
involvement it offers. Given the choice
between playing a deathmatch game against
bots or humans, gamers characteristically
prefer to play human opponents. This is
unsurprising to anyone familiar with multi-
player games, but it is interesting to consider
why this is so.

On top of immediate, purely technical
gameplay, multiplayer games offer the social
engagement of participating in a competi-
tion. Deathmatch games are group activities
that involve teams of players competing
against each other in contests of skill with a
clear determination of the winner. Emotional
involvement in the game is surprisingly high
and quite visible—players care about victory
and are vocal in expressing their emotions
through the game’s chat medium. When they
lose a game, they express frustration and
pain; when they win, they brag and boast
loudly. This emotional involvement is not
merely a side effect of the players’ being
human—rather, it fuels much of their enjoy-
ment of the game.6

Bots cannot help but be thrown into this
social gameplay, but they are utterly inca-
pable of properly participating in it. Their
inability to treat the game as a competition
makes them technically challenging but not

nearly as enjoyable as human opponents.
Unlike a human player, a computer character
feels no joy in winning and no humiliation
in losing. In the end, the player knows a bot
simply does not care, which makes beating
it a thankless task. We anticipate that creat-
ing bots that mimic human players’ involve-
ment in the game would make them more
appealing as opponents.

As a starting point, we developed a cheap
and efficient system that attempts to model
the two most common, and arguably simplest,
characteristics of players’social interactions:
displays of emotional involvement and ver-
bal posturing. Our objective for this project
was to build a bot modeled on the stereotyp-
ical juvenile delinquents who frequent these
online games, hence the project’s name. The
characteristics of communication in online
multiplayer games are particularly advanta-
geous in helping us model this demographic.

Exploiting the domain
Creating a simple chatting bot does not

require solving the full natural language
problem. The gaming domain limits the
problem’s scope in several helpful ways.

Online conversations in these games are
generally neither deep nor well structured.
Chatting in online games resembles Internet
Relay Chat in that the conversations are often

• Disconnected—topics change frequently,
so it’s easy to lose track of who is talking
to whom and about what.

• Layered—it’s not unusual for one person
to participate in more than one thread of
conversation simultaneously; conversely,
it is entirely possible to miss entire sections
of one thread while replying to another.

• Filled with bad spelling, worse grammar,
and vulgar language.

• Stocked with stereotypical personality
types, such as the boaster, sore loser, or
“are you a chick?” lecher.

Our hypothesis is that the nature of online
conversations is unstructured enough to let
us exploit classic text-processing techniques
to fake participation in them. In particular,
we can easily build a fast system that

• Recognizes good and bad events in the
game (winning, losing, killing, getting
killed, and so on) and reacts with appro-
priate responses from a large repertoire.

• Roughly recognizes when other players
are trash talking and responds appropri-

ately, depending on whether the player is
friend, foe, victor, and so on.

• Ignores anything too complex to process,
such as unrelated bits of conversation
about real-life events.

Similar approaches have proven quite
useful in the creation of chatting bots for
multiuser dungeons, such as Julia7 and
Cobot.8 MUD domains tend to allow for the
application of simpler techniques because
the game is usually highly playful and styl-
ized, which lets the agent get away with sur-
prisingly unrealistic behavior.9 In contrast,
first-person shooters have a much faster
pace, and the communication is often more
chaotic than in text-based games, further
helping the bot disguise itself. Human play-
ers will not likely be overly suspicious if the
bot misses some remarks directed toward it
or makes nonsensical comments from time
to time. Furthermore, the presence of obvi-
ous stereotypes provides a clear guide for
development.

Implementation
As our development and test platform, we

selected the first-person shooter Counter-
Strike, a popular game that has an average of
20,000 online players and over 4,000 active
game servers at any given time. The game
consists of short scenarios of four minutes or
less. When a player is eliminated, he or she
remains in the game as a spectator until the
next scenario begins. Eliminated players
often observe the ongoing action and chat
with one another extensively, thus the game
mechanics are tailor-made for our experi-
ment. Many juveniles play the game, several
of whom fit the stereotypes mentioned in the
previous section; the game itself builds on
periods of inactivity where the players are
implicitly encouraged to communicate with
one another through a chat interface.

Although Counter-Strike was originally
developed as a purely multiplayer online
game, members of the Counter-Strike com-
munity have developed many bots that are
readily available for download, often with
source code. We chose one of these bots,
Teambot (see www.planethalflife.com/team-
bot), as the foundation for our experiment.

The original Teambot had some chatting
capability, but only as a small preset number
of canned responses emitted sporadically
during the game. We decided to remove all
the original chatting code in Teambot and
implement our own version.

JULY/AUGUST 2002 computer.org/intelligent 5

Architecture. Figure 6 shows an outline of
our architecture design. The system that we
constructed is essentially an augmented ver-
sion of Eliza, the classic text-processing sys-
tem. It is a simple state-machine-based text-
pattern-matcher, written in C for extra speed.

Incoming chat messages or significant
game events are sent to Eliza, which is
equipped with a set of stereotypical person-
alities, such as boaster, whiner, and warez
dude (see Figure 7 for two examples). Each
of these profiles includes triggers for match-
ing events and conversational bits that would
be of interest to that particular personality.
For example, warez dude would be interested
in talking about pirated software, boaster
would have an extended repertoire of put-
downs and boasts, and so on. The bot uses a
particular personality for the game’s dura-

tion. Within each personality is a different
priority stack of speech behaviors. The
incoming messages or events are text-based
and matched against regular expressions
within each behavior. The first matching
behavior generates a response. At the bottom
of each priority stack is a confusion script behav-
ior, which generates generic stock responses
to inputs that seem important but cannot be
discerned by any other behavior.

Not every input message and event is
passed to the Eliza module: the bot determines
probabilistically whether it will respond to a
given message or event. When it actively par-
ticipates in the game, the bot has a low prob-
ability of responding to any messages. After it
is eliminated and is merely observing, the bot
becomes far more responsive.

Furthermore, the bot maintains a simple
valence memory of how it used to respond
to each player currently in the game. Valence
is not a simulation of emotion—rather, it pre-
sents a semblance of context in the bot’s con-
versations. A high positive value indicates
that the bot used to react positively to the
player, and a negative value suggests a his-
tory of negative reactions. Events and com-
munication in the game generate a range of
possible responses, and valence memory
influences the bot’s choice of an appropriate
response. Each response also includes a
valence modifier. Once the bot picks a
response, the modifier further adjusts the
valence value for the appropriate player.

The output response chosen is delayed for
a small amount of time before being passed
to the outgoing message handler. This pre-
vents the bot from producing output faster
than humanly possible.

Results. We started a game server online for
16 players and staffed eight of those slots with
our tt14m bots. From a tactical standpoint,
the bots were somewhat competent on the
maps, which had prepared waypoints to aid
with navigation although they still performed
some strange maneuvers occasionally. We
logged all conversations that occurred in the
game, including any between bots and human
players (see Figure 8).

Our main objective was to investigate how
far we could push a simple mechanism, such
as an augmented Eliza, to fool a human into
not treating it as a bot. We found that, in gen-
eral, we could fool some of the humans for a
good amount of time, but there were some
people who caught on surprisingly quickly.

The primary fault we found with the cur-
rent system is that Eliza-based conversations
are too schizophrenic to be believable over a
long period of time. The bots would jump
from topic to topic without any history other
than the general valence toward the speaker.
Over an extended period of time, this prop-
erty becomes quite noticeable. The system
needs a better way of representing the cur-
rent topic and should maintain a minimal
topic history. A mechanism such as a decay-
ing episodic memory model associated with
each player in the game would help. The sys-
tem would also benefit from some mecha-
nism for finding and mimicking patterns in
verbal behavior.

Another important problem was stylistic.
Rather than referring to a person by his or
her full name, players generally use some
abbreviation—for example, Robzilla the
Horrible would be referred to simply as
Robzilla or even Rob. The bots had no under-
standing of this, so they routinely missed
messages directed specifically at them. Con-
versely, when referring to a player, the bots
would use the player’s full name. This
appears very strange, particularly when
online players have a habit of using odd sym-
bols as part of their names or have long
monikers—for example, @Zbk@$hooter! or
Bill Nye the Violence Guy. This reduced the
bots’ realism and helped players break
through the illusion.

Finally, there was a serious but purely
technical glitch. All players within a multi-
player game server show a specific roundtrip
ping time to the server. Because they sit
directly on the server, bots show up as hav-
ing a ping time of only 5 ms. This is far too
low for a real human player and quickly
reveals that it’s a bot and not a human.

6 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

A I a n d I n f o t a i n m e n t

Personality
stereotypes

Valence
memory

Eliza DLL

TeamBot DLL

Find
response

Incoming
message/event

Pick
appropriate

reply

Delay

Outgoing
message
handler

Figure 6. TeamBot chat interface.

Personalities

Boaster personality Newbie personality

Boaster behavior

Warez dude behavior

Haxor behavior
.
.
.

Confusion script

Boaster behavior

Whiner behavior

Warez dude behavior
.
.
.

Confusion script

. . .

Figure 7. Behaviors with stereotypical personalities.

An obvious next step for our work is to
combine tt14m and Groo into a sin-

gle system. We did not do this at present
because we started the Groo project later than
the tt14m project, and we felt that we should
have our own infrastructure rather than
rework someone else’s.

On the social engagement side, we have
begun investigating more complex social
interaction using computationally simple
mechanisms. We hope to engage in more elab-
orate interactions than those that Eliza affords.

On the tactical side, we have started to
investigate scenarios that involve more team-
work. Deathmatch mode in first-person shoot-
ers offers a fairly limited range for team coop-
eration. A dynamic flocking behavior appears
to be an overwhelmingly successful tactic for
this mode of gameplay: it creates numerical
superiority for the bot team and is simple and
efficient to implement.10 Flocking is quite
easy to implement for Groo; in fact, an under-
graduate student did so in his final project for
a class at Northwestern. Advancing from this
mode of play, we have started work on a coop-
erative scenario based on a capture-the-flag
game built on top of FlexBot. Our goal is to
exploit a coordination architecture that we
developed for physical robots called HIVE-
Mind (Highly Interconnected Very Efficient
Mind) to create teams that still meet our effi-
ciency constraints.11

Acknowledgments
We thank Greg Dunham and Nick Trienens;

Groo would not exist without their invaluable work
on the FlexBot infrastructure. We are also grateful
to Ian Horswill for his advice and guidance.

References
1. J.E. Laird, It Knows What You’re Going to Do:

Adding Anticipation to a QuakeBot, AAAI
tech. report SS-00-02, AAAI Press, Menlo
Park, Calif., 2000.

2. R. Arkin, Behavior-Based Robotics, MIT
Press, Cambridge, Mass., 1998.

3. J.E. Laird and J.C. Duchi, Creating Human-
Like Synthetic Characters with Multiple Skill
Levels: A Case Study Using the Soar Quake-
bot, AAAI tech. report, SS-00-03, AAAI
Press, Menlo Park, Calif., 2000.

4. A. Khoo and I. Horswill, “An Efficient Coor-
dination Architecture for Autonomous Robot
Teams,” to be published in Proc. IEEE Int’l
Conf. Robotics and Automation, IEEE CS
Press, Los Alamitos, Calif., 2002.

5. N. Tinbergen, The Study of Instinct, Claren-
don Press, Oxford, UK, 1951.

6. R. Zubek and A. Khoo, Making the Human

Care: On Building Engaging Bots, AAAI
tech. report, SS-02-01, AAAI Press, Menlo
Park, Calif., 2002.

7. M. Mauldin, “Chatterbots, TinyMUDs, and
the Turing Test: Entering the Loebner Prize
Competition,” Proc. 12th Nat’l Conf. Artifi-
cial Intelligence (AAAI-94), AAAI Press,
Menlo Park, Calif., 1994, pp. 16–21.

8. C. Isbell et al., “Cobot in LambdaMOO: A
Social Statistics Agent,” Proc. 17th Nat’l Conf.
Artificial Intelligence (AAAI-2000), AAAI
Press, Menlo Park, Calif., 2000, pp. 36–41.

9. L.N. Foner, “Entertaining Agents: A Socio-
logical Case Study,” Proc. 1st Int’l Conf.
Autonomous Agents, ACM Press, New York,
1997, pp. 122–129.

10. M.J. Mataric, Interaction and Intelligent
Behavior, tech. report AITR-1495, Massa-
chusetts Inst. of Technology, Cambridge,
Mass., 1994.

11. A. Khoo et al., Efficient, Realistic NPC Con-
trol Systems Using Behavior-Based Tech-
niques, AAAI tech. report, SS-02-01, AAAI
Press, Menlo Park, Calif., 2002

JULY/AUGUST 2002 computer.org/intelligent 7

Figure 8. Some of the more interesting exchanges from the tt14m game logs: (a)
sample conversation involving bots; (b) sometimes human players notice that they are
talking with bots, (c) but sometimes they don’t. Boldface denotes bot names.

DEAD!PRV!AKOrbValk : whats the name of this map
DEAD@PRV@DeathFubar : guard that bomb
*DEAD*Dr-Azrael : hah
*DEAD*Silent Bob : we black
DEAD+EwokAce-KEC+ : doh
*DEAD*Dr-Azrael : de_dust (<— responds with the name of the map)
*DEAD*EvilSuperMalachi : i’m sick of being capped
*DEAD*Silent Bob : *shakes head ‘no’*
DEAD!hun!EvilSuperFoo : how do you use the scope?
*DEAD*Dr-Azrael : right click
(a)

DEAD@kNP@SecretToolValk : who are the bots here?
Accord : the people with 5 ping are bots
FunkyFunk : i hear the 5 ping thing is a server problem
BossWhax : heard anything about the new cs expansion?
Accord : damnit, i just answered a bot
PsychoPainHead : i’ve known damnit, i just answered forever, he aint no bot
(b)

Dr-Azrael : who me?
Dr-Azrael : damn it i was reloading
CountFoo[NUCS] : real men dont camp
@MonsterFooQuee-NUCS@ : whip that f—- a—
Silent Bob : *nods*
Dr-Azrael : i wasn’t camping
(c)

T h e A u t h o r s
Aaron Khoo is a PhD candidate at Northwestern University, where he is a
member of the Autonomous Mobile Robotics Group. His primary research
interests lie in the realm of multiagent systems and human–computer interac-
tion. He received a BA in computer science and mathematics from Knox Col-
lege. He is a member of AAAI. Contact him at Northwestern Univ., 1890 Maple
Ave., Evanston, IL 60201; khoo@cs.northwestern.edu; www.cs.northwestern.
edu/~khoo.

Robert Zubek is a PhD candidate at Northwestern University, where he is
a member of the Autonomous Mobile Robotics Group and the Interactive
Entertainment Group. His research interests include artificial intelligence
for computer entertainment and modeling of social interaction. He received
his BS in computer science from Northwestern. Contact him at Northwest-
ern Univ., 1890 Maple Ave., Evanston, IL 60201; rob@cs.northwestern.edu;
www.cs.northwestern.edu/~rob.

