
A New Method of Generating Synchronizable Test
Sequences that Detect Output-shifting Faults Based on

Multiple UIO Sequences
Kai Chen

Department of Computer Science
University of Science and Technology

of China
Hefei 230027, P.R.China

ckg@mail.ustc.edu.cn

Fan Jiang
Department of Computer Science

University of Science and Technology
of China

Hefei 230027, P.R.China

fjiang@ustc.edu.cn

Chuan-dong Huang
Department of Computer Science

University of Science and Technology
of China

Hefei 230027, P.R.China

yellow@mail.ustc.edu.cn

ABSTRACT
The objective of testing is to determine the conformance between
a system and its specification. When testing distributed systems,
the existence of multiple testers brings out the possibility of
synchronization problems among remote testers and the
possibility that output-shifting faults go undetected. This paper
proposes a new method of generating minimal synchronizable test
sequences that detect output-shifting faults based on multiple UIO
sequences. The procedure of test generation involves two steps:
constructing several auxiliary digraphs from a given specification
and finding a rural Chinese post tour (RCPT) in the resultant
digraph. When constructing the auxiliary digraphs, different from
all the former methods, we use vertices to denote transitions and
edges to represent two consecutive transitions. In terms of
property and application, the proposed method can construct a
relatively simple digraph which makes test generation easily.
After applying it to practice, we got hold of better results than the
existing methods.

Categories and Subject Descriptors
B.4.5 [I/O and Data Communications]: Reliability, Testing, and
Fault-Tolerance − Error-checking, Test generation; D.2.4
[Software Engineering]: Software/Program Verification –
Formal methods, Validation; D.2.5 [Software Engineering]:
Testing and Debugging – Error handling and recovery.

General Terms
Algorithms, Performance, Reliability, Verification

Keywords
distributed system, conformance testing, FSM, synchronization
problems, output-shifting faults

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC’06, April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

1. INTRODUCTION
The developing distributed systems have led to many issues in

relevant researches. An important aspect involves testing such
complex systems which requires the test techniques both effective
and efficient. The objective of testing is to determine whether an
Implementation Under Test (IUT) conforms to its specification.
Testing is usually realized by generating test sequences from a
specification and applying them to an IUT in a test architecture.
When testing a distributed system, we may confront with several
test architectures shown in Fig.1. This paper mainly considers the
architecture in Fig.1c. In this architecture, the IUT contains a
number of separate interfaces called ports and the test system
consists of a local tester for each port of the IUT. Each local tester
communicates with the IUT through its corresponding port, and
they also can exchange coordination messages with each other
through independent communication channels among them.

Fig.1: Several test architectures for distributed systems.

During the application of a test sequence in a distributed test
architecture, the existence of multiple testers brings out the
possibility of coordination problems among testers known as
synchronization problems and output-shifting faults. The
synchronization problem occurs if a tester cannot determine when
to apply a particular input to an IUT. It is therefore necessary to
construct a synchronizable test sequence that the coordination
among testers is achieved indirectly through their interactions
with the IUT [1]. For some specifications, however, there is no
synchronizable test sequence [2]. In this case, it is requisite for
testers to exchange coordination messages directly through
reliable communication channels which are independent of the
IUT. Moreover, due to the lack of a global clock, it is difficult to
determine which input triggered a particular output. This makes it
challenging to detect output being shifted between adjacent
transitions. In order to detect these output-shifting faults, the test

1791

sequence needs to be augmented either by additional
subsequences selected from the specification of the IUT [3] or by
coordination message exchanges between testers [4]. Furthermore,
for some specifications, there may not exist a test sequence where
output-shifting faults can be detected without using coordination
messages [5].

When considering the costs of coordination messages and I/O
operations, it is desirable to construct minimal test sequences.
Chen [6] and Wu [7] proposed a method to generate minimal
synchronizable test sequences, yet the sequences generated cannot
detect output-shifting faults. Cacciari [4] showed that how a
minimal set of messages may be added to a given test sequence to
produce a synchronizable test sequence that detects output-
shifting faults. However, a short initial test sequence may require
many additional messages. Hong [8] introduced a synchronization
relation digraph to describe the communication channels between
testers; however their method may bring out many unnecessary
messages either. Although Hierons [9] presented a method to
generate test sequences that detect output-shifting faults, we
found that the auxiliary digraph is too complicated and only
considers the single UIO sequence. Consequently, this paper will
exhibit a new method of generating minimal test sequences based
on multiple UIO sequences. What is more, the method executes in
a relatively easy manner and the generated test sequences have
the ability not only to solve the synchronization problems but also
to detect output-shifting faults.

The paper is structured as follows: Section 2 introduces the
preliminary knowledge. Section 3 presents the proposed method
and briefly compares it with the existing methods. Section 4 gives
the conclusions and future work.

2. PRELIMINARIES
2.1 FSM and Its Graphic Representation

An n-port Finite State Machine (np-FSM) M = (S, Σ, Γ, δ, λ, s0)
where:

 S is a finite set of states of M and s0∈S is the initial state of
M;

 Σ is an n-tuple (Σ1, Σ2, …Σn), where Σk is the input alphabet
of portk, and Σi ∩ Σj = ∅ for i ≠ j (i, j, k = 1, 2, …n). Let I =
Σ1∪Σ2∪···∪Σn∪{ε}, where ε represents null input;

 Γ is an n-tuple (Γ1, Γ2, …Γn), where Γk is the output alphabet
of portk, and Γi ∩ Γj = ∅ for i ≠ j (i, j, k = 1, 2, …n). Let O =
(Г1∪{ε}) × (Г2∪{ε}) × ... × (Гn∪{ε}), where ε represents
null output;

 δ is the transition function: D→S, and λ is the output
function: D→O, where D ⊆ S × I.

An np-FSM M can be represented by a digraph G = (V, E)

where V represents the set S of states of M and E represents all
specified transitions of M. Fig.2 shows two examples of 3p-FSM
with Σ1 = {a}, Σ2 = {b}, Σ3 = {c}, Г1 = {α, ζ}, Г2 = {β}, Г3 = {γ}.
A transition of an np-FSM is a triple (si, sj; x/y) where si, sj ∈ S, x
∈ I, y ∈ O, such that δ(si, x) = sj and λ(si, x) = y. For example in
Fig.2a, the transition t1 denotes that if s0 is the current state and
the input a is received, then the state moves to s1 and leads to the
output α to port1 and γ to port3 respectively.

 Fig.2: Two examples of 3p-FSM.

An FSM M is deterministic if for each input there is at most
one transition defined at each state of M. An FSM M is minimal if
none of its states are equivalent. In a digraph G(V, E), a path is
defined by a finite sequence of adjacent but not necessarily
distinct edges. G is strongly connected if for any pair of vertices vi
and vj there is a path from vi to vj. G is weakly connected if its
underlying undirected graph is connected. Let denotes the

number of edges leaving v, denotes the number of edges

entering v and denotes the number of self-loop of v. G is

symmetric if for each vertex v∈V = . A digraph
G'(V', E') is a sub-graph of G(V, E) if V' ⊆ V and E' ⊆ E. A sub-
graph G' which contains all the vertices of G is called a spanning
sub-graph of G. An edge-induced sub-graph G'[E

()v Gd +

()v Gd −

()v Gl
()v Gd + ()v Gd −

c] of G is the
sub-graph of G whose vertex set is the set of heads and tails of
edges in Ec and whose edge set is Ec where Ec ⊆ E. An edge-
induced sub-graph G'[Ec] is said to be an edge-induced spanning
sub-graph of G if its vertex set is equal to V.

A tour in digraph G is a path which begins and ends at the same
vertex. When it contains each edge exactly once we call it an
Euler Tour. It is known that G has an Euler Tour iff G is
symmetric and strongly connected. Finding a shortest tour that
contains each edge from a given edge set Ec at least once is called
rural Chinese postman problem (RCPP) [10].

2.2 Testing from an FSM with UIO Sequences
Traditionally, there are four basic test generation methods: T-,

U-, D-, and W-methods [11]. This paper mainly considers U-
method for its better fault coverage than T-method as well as
better computational complexity and flexibility than D- and W-
methods.

Usually, there are two types of fault a transition may have:
output fault and state transfer fault, in which the transition
produces the wrong output and moves the system to the wrong
state respectively. Thereafter, the U-method, which uses a unique
input/output (UIO) sequence to verify the ending state of each
transition besides testing each transition at least once, is widely
used in protocol conformance testing. This method involves
deriving UIO sequences for each state of M. A UIO sequence for
a state of M is an I/O behavior that is not exhibited by any other
state of M. In other words, the test sequence u is regarded to be a
UIO sequence for state si (1)i n≤ ≤ if and only if

1 ,j n∀ ≤ ≤ j i≠ ⇒ * *(,) (,).i js u sλ λ≠ u An example of UIO
sequence for each state of 3p-FSM in Fig.2a is listed in Table.1.

1792

Remark 1: The function *λ here is defined as follows, for x, x'∈ I,
* (, ')s xxλ = *(,) ((,), '),s x s x xλ λ δ and * (,) .sλ ε ε=

Table.1: Examples of UIO sequences in Fig.2a.
State UIO sequence Final State

s0 a/(α, ε, γ), c/(ζ, ε, γ) s1

s1 b/(α, β, ε) s1

s2 c/(ε, β, γ) s0

Let uj denote a UIO sequence for sj, then a transition t = (si, sj;

x/y) followed by UIO sequence uj is defined as a test segment for t.
The test sequence generation based on U-method is executed by
concatenating the test segment for each transition. This can be
expressed as an instance of RCPP. Computing a rural Chinese
postman tour (RCPT) is known as NP-complete; however, the
problem would have some effective algorithms under certain
conditions [12].

Lemma 1: If the edge-induced sub-graph G[Ec] of G is weakly
connected, then finding an RCPT over all edges in Ec can be
solved in polynomial-time and the algorithm has low order
polynomial complexity.

Lemma 2: If the edge-induced sub-graph G[Ec] of G is not
weakly connected, then finding an RCPT over all edges in Ec can
apply some heuristic algorithms and the results are sub-optimal
and within a bound from the optimization.

Remark 2: Proofs of the above lemmas have been well
established in many former works (e.g. [12, 13]), and the main
work of this paper is not on the improvement of the algorithms of
finding an RCPT but on the new method to be introduced. In the
following, we just make use of the well-established algorithms.

2.3 Synchronization Problems and Output-
shifting Faults

When testing a distributed system, the synchronization problem
arises if a tester cannot determine when to apply a particular input
to IUT because it is not involved in the previous transition, i.e. it
does not send the input or receive the output in the previous
transition. Given x ∈ I, let port(x) denotes the port associated with
input x. Given y = (y1, y2, ...yn) ∈ O, let ports(y) denotes the set of
ports associated with values from y that are not null.

Definition 1: Two consecutive transitions t = (si, sj; x/y) and t' =
(sj, sk; x'/y') are synchronizable if port(x') ∈ ports(y) ∪ {port(x)}.
A given test sequence is said to be synchronizable if any two
consecutive transitions of the sequence are synchronizable.

 Example 1: Consider the transition sequences <a/(α, ε, γ), b/(α,
β, ε), c/(ζ, ε, γ), a/(α, ε, γ), c/(ε, β, γ)> (i.e. <t1, t3, t2, t4, t5>) of 3p-
FSM in Fig.2a. It is required that when s1 is reached, the IUT
should receive b (sent by Tester2) before receiving c (sent by
Tester3). Since it does not send the input or receive the output in
transition t3, Tester3 does not know whether b has been received
by the IUT. Therefore, Tester3 has no means to determine the
order of b and c, i.e. synchronization problem happens.

Due to the lack of a global clock, it is difficult to determine
which input triggered a particular output. Even if the behaviors of
all the ports are the same as expected, the output-shifting faults

may stay in the IUT. Consider a transition t = (si, sj; x/Y). Y = (y1,
y2, …yn) is a vector that represents the output on each port of the
IUT. Suppose that if yi = ε then we regard it as 0, otherwise we
regard it as 1.

Definition 2: The sequence tt', for transitions t = (si, sj; x/Y) and
t' = (sj, sk; x'/Y') with Y = (y1, y2, …yn) and Y' = (y1', y2', …yn')
respectively, has potential output-shifting faults iff

[1,], (')
(i ii n i port x

')y y
∈ ≠

∪ ⊕ = 1. The ports on which y ⊕ y' = 1 have

potential output-shifting faults.

The output-shifting faults may occur in two forms: 1) suppose
that yk ≠ ε, y'k = ε, port(x') ≠ k, the actual outputs in the
corresponding transitions in the IUT are yk = ε, y'k ≠ ε respectively;
2) suppose that yk = ε, y'k ≠ ε, port(x') ≠ k, the actual outputs in the
corresponding transitions in the IUT are yk ≠ ε, y'k = ε respectively.

Example 2: Consider two consecutive transitions <a/(ε, β, γ),
c/(α, ε, γ)> (i.e. <t4, t5>) of 3p-FSM in Fig.2b. Compared it with
its specification in Fig.2a, the output α has been “shifted” from t4
to t5 while the output β has been “shifted” from t5 to t4. Within a
distributed architecture, however, these output-shifting faults
cannot be detected because all the testers receive their expected
outputs in right order (Fig.3) although the IUT is actually faulty.

 Fig.3: The expected behavior of each tester in Fig.2a.
Remark 3: The sending and receiving of message x are denoted
by !x and ?x respectively.

Let synΔΓ denotes a coordination message from portΔ to portΓ.
To ensure the solution to synchronization problems and the
detection of output-shifting faults, the coordination messages
should be added to the test sequences where necessary. The
following rules will guarantee the synchronization of multiple
testers and the detection of output-shifting faults in consecutive
transitions tt' (t = (si, sj; x/y) and t' = (sj, sk; x'/y')).

ALGORITHM 1:
Step1: Testerport(x) inputs x to the IUT,
Step2: If port(x') ∉ ports(y)∪{port(x)} then Testerport(x) sends a
synchronization message to Testerport(x'). (This coordination
message is necessary to resolve the synchronization problem
between two testers.)
Step3: While receiving an output from the IUT or a
synchronization message from Testerport(x), Testerport(x') sends
coordination messages to all the testers having potential output-
shifting faults. (These testers can be calculated by Definition2 and
output-shifting faults can be detected by inserting these messages.)
Step4: Testerport(x') inputs x' to the IUT.

3. THE PROPOSED METHOD
Formally, the proposed method exhibits a new solution of

generating minimal test sequences that detect output-shifting

1793

faults based on multiple UIO sequences. Firstly we design an
auxiliary digraph G* from the given specification M, then the
digraph can be applied to generate test sequences. In addition, by
taking into account the costs of both transitions and coordination
messages, a minimal synchronizable test sequence that detects
output-shifting faults for M will be constructed as an RCPT over
all the test segments of M in G*.

3.1 The Description of the Proposed Method
Consider a minimal and deterministic np-FSM M0 represented

by a strongly connected digraph G = (V, E) (e.g. Fig.4a). In the
first place, the proposed method constructs the first auxiliary
digraph G' = (V', E') (e.g. Fig.4b) from G(V, E) according to the
following steps:

ALGORITHM 2:
Step1: For each edge t = (si, sj; x/y) ∈G, create a vertex vt in G',
Step2: For any two adjacent edges t = (si, sj; x/y) ∈ G and t' = (sj,
sk; x'/y') ∈ G, create a fine edge ett' = (vt, vt'; labeltt') in G'. The
initial vertex of ett' is vt and the final vertex of ett' is vt',

2a) labeltt' = t, if there is no synchronization problem or
potential output-shifting faults in tt',

2b) labeltt' = t@co-msgs, if there exist synchronization
problems or potential output-shifting faults in tt'.

Remark 4: @ represents concatenation and co-msgs denote all
necessary coordination messages in tt'.

Fig.4: An example of 2p-FSM M0 and the first auxiliary
digraph of M0 constructed by Algorithm2.

With the aid of Fig.4b, multiple UIO sequences with necessary
coordination messages for 2p-FSM in Fig.4a is shown in Table.2.

Table.2: Multiple UIO sequences for M0 in Fig.4a.
State UIO sequences Final state

 s1 UIO1(s1) = [t2] s3

UIO1(s2) = [t4synBAt5] s1s2

UIO2(s2) = [t4t6] s1

UIO1(s3) = [t5] s1

UIO2(s3) = [t6synBAt1] s2

 s3

UIO3(s3) = [t6t2] s3

In the second place, the second auxiliary digraph G*(V*, E*)
(e.g., Fig.6) for an np-FSM M (e.g., Fig.4a) is constructed by

adding a set of bold and dashed edges and bold vertices to G'(V',
E') (e.g., Fig.4b) according to the following steps:

ALGORITHM 3:
Step1: For each transition tk = (si, sj; x/y)∈E, add a bold vertex
Vtk-sj and a bold edge (vtk, Vtk-sj, tk),
Step2: For each bold vertex Vtk-sj and each UIOi(sj) for state sj, a
dashed edge (Vtk-sj, vtl, co-msgs@UIOi'(sj)) is created with
coordination messages co-msgs if necessary. (Here, tl is the last
transition in UIOi(sj) and UIOi(sj) = UIOi'(sj)@tl and co-msgs are
requisite when there exist synchronization problem or potential
output-shifting faults between tk and the first transition in
UIOi(sj).)
Step3: Merge all the equivalent bold vertices. (Two bold vertices
Vtk-sj and Vtl-sj are equivalent if the corresponding dashed edges
associated with them have the same final vertices and labels. For
example, in Fig.5, bold vertices Vt1-s2 and Vt3-s2 are equivalent
since dashed edges associated with them have the same final
vertices vt5, vt6 and labels synBAUIO1'(s2), synBAUIO2'(s2),
respectively. Then they are merged into Vs2 in Fig.6.)
Step4: For each dashed edge, if it is the unique dashed edge that
leaves the relating bold vertex, then change the dashed edge into a
bold edge.

In step1, each bold edge (vtk, Vtk-sj, tk) represents the first
transition in the test segment for tk. In step2, each dashed edge
(Vtk-sj, vtl, co-msgs@UIOi'(sj)) represents a synchronizable UIO
sequence that can detect output-shifting faults. All the equivalent
bold vertices are merged in step3 to make the structure of digraph
simpler and the purpose of step4 is to increase the likelihood of
obtaining a weakly connected sub-graph consisting of bold edges.
Table.3 lists the bold and dashed edges to be added to Fig.4b, and
Fig.5 and Fig.6 show the constructed digraphs after step1, 2 and
step3, 4 respectively.

Table.3 A set of edges for each transition of M0 in Fig.4a.
corresponding edge in G* tran test segment last

tran
bold edge dashed edge

t1synBAUIO1(s2) t5 (Vt1-s2, vt5; synBAUIO1'(s2)) t1

t1synBAUIO2(s2) t6

(vt1, Vt1-s2; t1)

(Vt1-s2, vt6; synBAUIO2'(s2))

t2synBAUIO1(s3) t5 (Vt2-s3, vt5; synBAUIO1'(s3))

t2UIO2(s3) t1 (Vt2-s3, vt1; UIO2'(s3))

t2

t2UIO3(s3) t2

(vt2, Vt2-s3; t2)

(Vt2-s3, vt2; UIO3'(s3))

t3synBAUIO1(s2) t5 (Vt3-s2, vt5; synBAUIO1'(s2)) t3

t3synBAUIO2(s2) t6

(vt3, Vt3-s2; t3)

 (Vt3-s2,vt6; synBAUIO2'(s2))

t4synBAUIO1(s3) t5 (Vt4-s3, vt5; synBAUIO1'(s3))

t4UIO2(s3) t1 (Vt4-s3, vt1; UIO2'(s3))

t4

t4UIO3(s3) t2

(vt4, Vt4-s3; t4)

(Vt4-s3, vt2; UIO3'(s3))

t5 t5UIO1(s1) t2 (vt5, Vt5-s1; t5) (Vt5-s1, vt2; UIO1'(s1))

t6 t6UIO1(s1) t2 (vt6, Vt6-s1; t6) (Vt6-s1, vt2; UIO1'(s1))

The final step of test generation based on multiple UIO

sequences involves finding a minimal tour of G* over each bold
edge at least once. This is an instance of RCPP. As is shown in
section 2.2, if the bold edges form a weakly connected spanning
sub-graph, a polynomial-time algorithm can be used to obtain an
RCPT over the bold edges in the digraph covering all the test
segments at least once. The procedure of finding an RCPT is
reduced to two phases: constructing a minimal rural symmetric

1794

augmentation digraph of G* and finding an Euler tour on the
digraph. Otherwise, if the bold edges cannot form a weakly
connected spanning sub-graph, some heuristic algorithms for
obtaining an RCPT over the bold edges of the digraph yields a test
sequence whose cost is sub-optimal. They can all be well solved
using any existing classical algorithm as we introduce in section
2.2. We just need to apply our constructed digraph to the
algorithms. For example, an RCPT over all the bold edges in
Fig.6 (For the minimal rural symmetric augmentation digraph see
appendix A.): [t1, synBA, UIO2'(s2), t6, UIO1'(s1), t2, UIO2'(s3), t1,
t3, synBA, UIO1'(s2), t5, UIO1'(s1), t2, t6, synBA, t1, synBA, t4, synBA,
UIO1'(s3), t5] yields the test sequence [α/(a, c), synBA, β/(ε, c),
β/(ε, c), β/(ε, b), β/(ε, c), synBA, α/(a, c), α/(a, c), synBA, β/(ε, c),
synBA, α/(ε, c), β/(ε, b), β/(ε, c), synBA, α/(a, c), synBA, β/(ε, c),
synBA, α/(ε, c)] with total costs of 14 transitions and 7
coordination messages. It is a synchronizable test sequence that
detects output-shifting faults. In this test sequence, the test
segment for t1 is [α/(a, c), synBA, β/(ε, c), β/(ε, c)], for t6 is [β/(ε,
c), β/(ε, b)], for t2 is [β/(ε, b), β/(ε, c), synBA, α/(a, c)], for t3 is
[α/(a, c), synBA, β/(ε, c), synBA, α/(ε, c)], for t5 is [α/(ε, c), β/(ε,
b)], for t4 is [β/(ε, c), synBA, α/(ε, c)].

Fig.5: The digraph G*(V*, E*) obtained from the digraph
G'(V', E') in Fig.4b after step1 and step2. (The newly added
vertices and edges are shown in Table.3. Each bold edge (vtk,
Vtk-sj, tk) represents the first transition in the test segment for
tk. And each dashed edge, together with one of its subsequent
fine or bold edges, forms a UIO sequence for the
corresponding state. For example, UIO1'(s1) and its
subsequent t2 form UIO1(s1) that is a UIO sequence for state
s1.)

3.2 Properties of the Proposed Method
Given the digraph G = (V, E) of np-FSM M = (S, Σ, Г, δ, λ, s0),

let | V | = | S | = r, | E | = m, and | I | = | Σ1 ∪ Σ2 ∪ ... ∪ Σn | = p.
In Algorithm2, each transition of M leads to only 1 vertex and any
two consecutive transitions lead to 1 edge in G'. Thus the first
auxiliary digraph G' = (V', E') has m vertices and

(() () ())v v v
v V

G G Gd d l+ −

∈

× −∑ edges. Since there are at most | I |

edges that leave each vertex in G, so 0 ≤ ≤ | I | = p and 0

≤ , ≤ | E | = m, and then G' has O(pm) edges. In
Algorithm3, for each vertex in G' at most 1 corresponding bold
vertex will be added in G*. Given the number of UIO sequences
for each state is less than q, then each newly added vertex leads to
at most q edges in G*. As a whole, the ultimate auxiliary digraph
G*(V*, E*) has at most 2m vertices and O((p + q)m) edges.

()v Gd +

()v Gd − ()v Gl

Fig.6: The ultimate digraph G*(V*, E*) after step3 and step4.
(Vt1-s2 and Vt3-s2 are merged into Vs2, Vt2-s3 and Vt4-s3 are merged
into Vs3, and Vt5-s1 and Vt6-s1 are merged into Vs1 respectively.
Dashed edge (Vs1, vt2, UIO1'(s1)) is changed into a bold edge
because it is the unique dashed edge leaving bold vertex Vs1.
Test generation based on multiple UIO sequences involves
finding a minimal tour of this digraph over each bold edge at
least once.)

3.3 Comparison with the Existing Methods
In the field of distributed systems testing, there are many well-

done literatures concerning the test sequences generation. For
example, Chen [6], Hierons[9] and Shen[13] consider similar
topic as we do in this paper, however, our proposed method is
quite different from all these papers. In addition, all these
methods have their own deficiencies respectively. Table.4 shows
a brief comparison of functions of these methods.

The proposed method can also deal with single UIO sequence.
The situation of single UIO sequence has been well considered in
[9]. However, for the same np-FSM (i.e. Fig.4a) used in [9], we
will show that our method can yield a better result. When
applying our method to the condition in [9], i.e. the UIO sequence

1795

for s1 is [β/(ε, b)], for s2 is [β/(ε, c), β/(ε, c)] and for s3 is [α/(ε, c)],
the digraph G^(V^, E^) (Fig.7) is constructed.

Table.4: Functions based comparison

Method Synchro
nization

Output
shifting

Single
UIO

Multiple
UIO

Ours √ √ √ √

 Chen[6] √ − − √

Hierons[9] √ √ √ −

Shen[13] − − − √

Remark 5: “√” denotes that the method covers the corresponding
situation, while “−” denotes the method does not consider the
situation.

Fig.7: The digraph G^(V^, E^) under the condition that UIO
sequence for each state has been given beforehand. (Since the
UIO sequence for each state has been given, there is only one
dashed edge leaving each bold vertex and these bold vertices
can be eliminated by making a combination of edges
associated with them. The resultant digraph has a more
likelihood to be a weakly connected digraph. For the same 2p-
FSM, the resultant digraph in [9] is not weakly connected.)

 Obviously, the bold edges in G^ form a weakly connected
spanning sub-graph. Then a polynomial-time algorithm can be
used to obtain an RCPT (For the minimal rural symmetric
augmentation digraph see appendix B.): [t1, synBA, t4, t6, t2, synBA,
t5, t1, t3, synBA, t4, t6, synBA, t1, synBA, t4, synBA, t5, t2, t6, synBA]. This
yields a minimal synchronizable test sequence [α, synBA, β, β, β,
synBA, α, α, α, synBA, β, β, synBA, α, synBA, β, synBA, α, β, β] that
detects output-shifting faults. It has 14 transitions and 7
coordination messages. For the same question, the method in [9]
generates a minimal synchronizable test sequence [syBA, α, postAB,
β, β, β, syBA, α, α, α, postAB, β, β, syBA, α, syBA, β, syBA, α, syAB, β,
β, β, syBA, α, β, β] that detects output-shifting faults with 18

transitions and 9 coordination messages. It has 4 more transitions
and 2 more coordination messages than the test sequence of our
method.

4. CONCLUSIONS AND FUTURE WORK
Synchronization problems and output-shifting faults arise in

distributed testing since there is no global clock available. This
paper has introduced a new approach that generates
synchronizable test sequences that detect output-shifting faults
based on multiple UIO sequences. The procedure of test
generation can be phrased as an instance of the rural Chinese
postman problem (RCPP). The resultant optimization problem
may be resolved using standard algorithms.

When constructing auxiliary digraph from a given FSM, we use
vertices to denote transitions and edges to represent two
consecutive transitions. The application of the proposed method
illustrates that it constructs a relatively simpler digraph and the
resultant test sequences have a better characteristic than the
existing methods.

The proposed method exhibits a new method of generating
synchronizable test sequences that detect output-shifting faults
utilizing multiple UIO sequences. However, the paper does not
consider the overlapping problems. How to address the
overlapping problems effectively and how to choose UIO
sequences more properly will be considered in the future work.
Additionally, for some np-FSMs, the output-shifting faults can be
detected utilizing test subsequences instead of exchanging
coordination message. Producing the sufficient and necessary
conditions for the existence of such test subsequences and finding
minimal-length subsequences are included in our future work.

5. REFERENCES
[1] B. Sarikaya, G.v. Bochmann, Synchronization and

specification issues in protocol testing, IEEE Trans. Comm.
32(1984) 389-395.

[2] S. Boyd, H.Ural, The synchronization problem in protocol
testing and its complexity, Inform. Process. Lett. 49(1991)
131-136.

[3] G. Luo, R. Dssouli, G.v. Bochmann, P. Venkataram, A.
Ghedamsi, Test generation with respect to distributed
interfaces, Comput. Standards Interfa- ces 16(1994) 119-132.

[4] L. Cacciari, O.Rafiq, Controllability and observability in
distributed testing, Inform. Software Technol. 41(1999) 767-
780.

[5] J. Chen, R.M. Hierons, H. Ural, Conditions for Resolving
Observability Problems in Distributed testing, FORTE 2004,
LNCS 3235, 229-242.

[6] W. H. Chen, H. Urd, Synchronizable test sequence based on
multiple UIO sequence, IEEE/ACM Transactions on
Networking, 1995, 3(2):152-157

[7] W. I. Wu, W. H. Chen, C. Y. Tang, Synchronizable test
sequence for multi-party protocol conformance testing,
Computer Communications, 19- 98,21: 1177-1183.

[8] Hong Liu, Jian-Ping Wu, Xia Yin, Generating external
synchronizable test sequences that detect output-shifting
faults, ConTEL 2003, 565-571.

1796

B: Rural Symmetric Digraph for Fig.7 [9] R.M. Hierons, Testing a distributed system: generating
minimal synchronised test sequences that detect output-
shifting faults, Inform. Software Technol. 43(9)(2001) 551-
560.

[10] A. Gibbons, Algorithmic Graph Theory, Cambridge
University Press, 1985.

[11] D. P. Sidhu and T. K. Leung， Formal methods for protocol
testing: A detailed study, IEEE Transactions on Software
Engineering, 15(1989) 413- 426.

[12] A. Aho, A. Dahbura, D. Lee, M. Uyar, An optimization
technique for protocol conformance test generation based on
UIO sequences and rural Chinese postman tours, IEEE Trans.
Comm.39 (11)(1991) 1604-1615.

[13] Y.-N. Shen, F. Lombardi, A. T. Dabbura, Protocol
conformance testing using multiple UIO sequences, IEEE
Trans. Commun, vol. 40, pp. 1282-1287, 1992.

APPENDIX
A: Rural Symmetric Digraph for Fig.6

Fig.9: The minimal rural symmetric augmentation digraph
for the digraph G^(V^, E^), and test generation is reduced to
find an Euler Tour in this symmetric and strongly connected
digraph.

BIOGRAPHY
Mr. Chen Kai is now a graduate student in University of Science
and Technology of China. Main research areas include Wireless
Communication Networks, Protocol Conformance Testing and
Parallel & Distributed Systems. Mr. Jiang Fan is now a Professor
in USTC. Mr. Huang Chuan-dong is now a PhD in USTC.

Fig.8: The minimal rural symmetric augmentation digraph
for the digraph G*(V*, E*), and test generation is reduced to
find an Euler Tour in this symmetric and strongly connected
digraph.

1797

