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ABSTRACT 
The objective of testing is to determine the conformance between 
a system and its specification. When testing distributed systems, 
the existence of multiple testers brings out the possibility of 
synchronization problems among remote testers and the 
possibility that output-shifting faults go undetected. This paper 
proposes a new method of generating minimal synchronizable test 
sequences that detect output-shifting faults based on multiple UIO 
sequences. The procedure of test generation involves two steps: 
constructing several auxiliary digraphs from a given specification 
and finding a rural Chinese post tour (RCPT) in the resultant 
digraph. When constructing the auxiliary digraphs, different from 
all the former methods, we use vertices to denote transitions and 
edges to represent two consecutive transitions. In terms of 
property and application, the proposed method can construct a 
relatively simple digraph which makes test generation easily. 
After applying it to practice, we got hold of better results than the 
existing methods. 

Categories and Subject Descriptors 
B.4.5 [I/O and Data Communications]: Reliability, Testing, and 
Fault-Tolerance − Error-checking, Test generation; D.2.4 
[Software Engineering]: Software/Program Verification – 
Formal methods, Validation; D.2.5 [Software Engineering]: 
Testing and Debugging – Error handling and recovery.

General Terms 
Algorithms, Performance, Reliability, Verification 

Keywords 
distributed system, conformance testing, FSM, synchronization 
problems, output-shifting faults 
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1. INTRODUCTION 
The developing distributed systems have led to many issues in 

relevant researches. An important aspect involves testing such 
complex systems which requires the test techniques both effective 
and efficient. The objective of testing is to determine whether an 
Implementation Under Test (IUT) conforms to its specification. 
Testing is usually realized by generating test sequences from a 
specification and applying them to an IUT in a test architecture. 
When testing a distributed system, we may confront with several 
test architectures shown in Fig.1. This paper mainly considers the 
architecture in Fig.1c. In this architecture, the IUT contains a 
number of separate interfaces called ports and the test system 
consists of a local tester for each port of the IUT. Each local tester 
communicates with the IUT through its corresponding port, and 
they also can exchange coordination messages with each other 
through independent communication channels among them. 

 
Fig.1: Several test architectures for distributed systems. 

During the application of a test sequence in a distributed test 
architecture, the existence of multiple testers brings out the 
possibility of coordination problems among testers known as 
synchronization problems and output-shifting faults. The 
synchronization problem occurs if a tester cannot determine when 
to apply a particular input to an IUT. It is therefore necessary to 
construct a synchronizable test sequence that the coordination 
among testers is achieved indirectly through their interactions 
with the IUT [1]. For some specifications, however, there is no 
synchronizable test sequence [2]. In this case, it is requisite for 
testers to exchange coordination messages directly through 
reliable communication channels which are independent of the 
IUT. Moreover, due to the lack of a global clock, it is difficult to 
determine which input triggered a particular output. This makes it 
challenging to detect output being shifted between adjacent 
transitions. In order to detect these output-shifting faults, the test 
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sequence needs to be augmented either by additional 
subsequences selected from the specification of the IUT [3] or by 
coordination message exchanges between testers [4]. Furthermore, 
for some specifications, there may not exist a test sequence where 
output-shifting faults can be detected without using coordination 
messages [5]. 

When considering the costs of coordination messages and I/O 
operations, it is desirable to construct minimal test sequences. 
Chen [6] and Wu [7] proposed a method to generate minimal 
synchronizable test sequences, yet the sequences generated cannot 
detect output-shifting faults. Cacciari [4] showed that how a 
minimal set of messages may be added to a given test sequence to 
produce a synchronizable test sequence that detects output-
shifting faults. However, a short initial test sequence may require 
many additional messages. Hong [8] introduced a synchronization 
relation digraph to describe the communication channels between 
testers; however their method may bring out many unnecessary 
messages either. Although Hierons [9] presented a method to 
generate test sequences that detect output-shifting faults, we 
found that the auxiliary digraph is too complicated and only 
considers the single UIO sequence. Consequently, this paper will 
exhibit a new method of generating minimal test sequences based 
on multiple UIO sequences. What is more, the method executes in 
a relatively easy manner and the generated test sequences have 
the ability not only to solve the synchronization problems but also 
to detect output-shifting faults. 

The paper is structured as follows: Section 2 introduces the 
preliminary knowledge. Section 3 presents the proposed method 
and briefly compares it with the existing methods. Section 4 gives 
the conclusions and future work. 

2. PRELIMINARIES 
2.1 FSM and Its Graphic Representation 

An n-port Finite State Machine (np-FSM) M = (S, Σ, Γ, δ, λ, s0) 
where: 

 S is a finite set of states of M and s0∈S is the initial state of 
M; 

 Σ is an n-tuple (Σ1, Σ2, …Σn), where Σk is the input alphabet 
of portk, and Σi ∩ Σj = ∅ for i ≠ j (i, j, k = 1, 2, …n). Let I = 
Σ1∪Σ2∪···∪Σn∪{ε}, where ε represents null input; 

 Γ is an n-tuple (Γ1, Γ2, …Γn), where Γk is the output alphabet 
of portk, and Γi ∩ Γj = ∅ for i ≠ j (i, j, k = 1, 2, …n). Let O = 
(Г1∪{ε}) × (Г2∪{ε}) × ... × (Гn∪{ε}), where ε represents 
null output; 

 δ is the transition function: D→S, and λ is the output 
function: D→O, where D ⊆ S × I. 

 
An np-FSM M can be represented by a digraph G = (V, E) 

where V represents the set S of states of M and E represents all 
specified transitions of M. Fig.2 shows two examples of 3p-FSM 
with Σ1 = {a}, Σ2 = {b}, Σ3 = {c}, Г1 = {α, ζ}, Г2 = {β}, Г3 = {γ}. 
A transition of an np-FSM is a triple (si, sj; x/y) where si, sj ∈ S, x 
∈ I, y ∈ O, such that δ(si, x) = sj and λ(si, x) = y. For example in 
Fig.2a, the transition t1 denotes that if s0 is the current state and 
the input a is received, then the state moves to s1 and leads to the 
output α to port1 and γ to port3 respectively. 

 
                      Fig.2:  Two examples of 3p-FSM. 

An FSM M is deterministic if for each input there is at most 
one transition defined at each state of M. An FSM M is minimal if 
none of its states are equivalent. In a digraph G(V, E), a path is 
defined by a finite sequence of adjacent but not necessarily 
distinct edges. G is strongly connected if for any pair of vertices vi 
and vj there is a path from vi to vj. G is weakly connected if its 
underlying undirected graph is connected. Let denotes the 

number of edges leaving v, denotes the number of edges 

entering v and denotes the number of self-loop of v. G is 

symmetric if for each vertex v∈V  = . A digraph 
G'(V', E') is a sub-graph of G(V, E) if V' ⊆ V and E' ⊆ E. A sub-
graph G' which contains all the vertices of G is called a spanning 
sub-graph of G. An edge-induced sub-graph G'[E

( )v Gd +

( )v Gd −

( )v Gl
( )v Gd + ( )v Gd −

c] of G is the 
sub-graph of G whose vertex set is the set of heads and tails of 
edges in Ec and whose edge set is Ec where Ec ⊆ E. An edge-
induced sub-graph G'[Ec] is said to be an edge-induced spanning 
sub-graph of G if its vertex set is equal to V. 

A tour in digraph G is a path which begins and ends at the same 
vertex. When it contains each edge exactly once we call it an 
Euler Tour. It is known that G has an Euler Tour iff G is 
symmetric and strongly connected. Finding a shortest tour that 
contains each edge from a given edge set Ec at least once is called 
rural Chinese postman problem (RCPP) [10]. 

2.2 Testing from an FSM with UIO Sequences 
Traditionally, there are four basic test generation methods: T-, 

U-, D-, and W-methods [11]. This paper mainly considers U-
method for its better fault coverage than T-method as well as 
better computational complexity and flexibility than D- and W-
methods. 

Usually, there are two types of fault a transition may have: 
output fault and state transfer fault, in which the transition 
produces the wrong output and moves the system to the wrong 
state respectively. Thereafter, the U-method, which uses a unique 
input/output (UIO) sequence to verify the ending state of each 
transition besides testing each transition at least once, is widely 
used in protocol conformance testing. This method involves 
deriving UIO sequences for each state of M. A UIO sequence for 
a state of M is an I/O behavior that is not exhibited by any other 
state of M. In other words, the test sequence u is regarded to be a 
UIO sequence for state si (1 )i n≤ ≤ if and only if 

1 ,j n∀ ≤ ≤ j i≠ ⇒ * *( , ) ( , ).i js u sλ λ≠ u An example of UIO 
sequence for each state of 3p-FSM in Fig.2a is listed in Table.1. 

1792



Remark 1: The function *λ here is defined as follows, for x, x'∈ I, 
* ( , ')s xxλ = *( , ) ( ( , ), '),s x s x xλ λ δ and * ( , ) .sλ ε ε=  

Table.1: Examples of UIO sequences in Fig.2a. 
State UIO sequence Final State 

s0 a/(α, ε, γ), c/(ζ, ε, γ) s1

s1 b/(α, β, ε) s1

s2 c/(ε, β, γ) s0

 
Let uj denote a UIO sequence for sj, then a transition t = (si, sj; 

x/y) followed by UIO sequence uj is defined as a test segment for t. 
The test sequence generation based on U-method is executed by 
concatenating the test segment for each transition. This can be 
expressed as an instance of RCPP. Computing a rural Chinese 
postman tour (RCPT) is known as NP-complete; however, the 
problem would have some effective algorithms under certain 
conditions [12]. 

Lemma 1: If the edge-induced sub-graph G[Ec] of G is weakly 
connected, then finding an RCPT over all edges in Ec can be 
solved in polynomial-time and the algorithm has low order 
polynomial complexity. 

Lemma 2: If the edge-induced sub-graph G[Ec] of G is not 
weakly connected, then finding an RCPT over all edges in Ec can 
apply some heuristic algorithms and the results are sub-optimal 
and within a bound from the optimization. 

Remark 2: Proofs of the above lemmas have been well 
established in many former works (e.g. [12, 13]), and the main 
work of this paper is not on the improvement of the algorithms of 
finding an RCPT but on the new method to be introduced. In the 
following, we just make use of the well-established algorithms. 

2.3 Synchronization Problems and Output-
shifting Faults 

When testing a distributed system, the synchronization problem 
arises if a tester cannot determine when to apply a particular input 
to IUT because it is not involved in the previous transition, i.e. it 
does not send the input or receive the output in the previous 
transition. Given x ∈ I, let port(x) denotes the port associated with 
input x. Given y = (y1, y2, ...yn) ∈ O, let ports(y) denotes the set of 
ports associated with values from y that are not null. 

Definition 1: Two consecutive transitions t = (si, sj; x/y) and t' = 
(sj, sk; x'/y') are synchronizable if port(x') ∈ ports(y) ∪ {port(x)}. 
A given test sequence is said to be synchronizable if any two 
consecutive transitions of the sequence are synchronizable. 

  Example 1: Consider the transition sequences <a/(α, ε, γ), b/(α, 
β, ε), c/(ζ, ε, γ), a/(α, ε, γ), c/(ε, β, γ)> (i.e. <t1, t3, t2, t4, t5>) of 3p-
FSM in Fig.2a. It is required that when s1 is reached, the IUT 
should receive b (sent by Tester2) before receiving c (sent by 
Tester3). Since it does not send the input or receive the output in 
transition t3, Tester3 does not know whether b has been received 
by the IUT. Therefore, Tester3 has no means to determine the 
order of b and c, i.e. synchronization problem happens. 

Due to the lack of a global clock, it is difficult to determine 
which input triggered a particular output. Even if the behaviors of 
all the ports are the same as expected, the output-shifting faults 

may stay in the IUT. Consider a transition t = (si, sj; x/Y). Y = (y1, 
y2, …yn) is a vector that represents the output on each port of the 
IUT. Suppose that if yi = ε then we regard it as 0, otherwise we 
regard it as 1. 

Definition 2: The sequence tt', for transitions t = (si, sj; x/Y) and 
t' = (sj, sk; x'/Y') with Y = (y1, y2, …yn) and Y' = (y1', y2', …yn') 
respectively, has potential output-shifting faults iff 

[1, ], ( ')
( i ii n i port x

')y y
∈ ≠

∪ ⊕ = 1. The ports on which y ⊕ y' = 1 have 

potential output-shifting faults. 

The output-shifting faults may occur in two forms: 1) suppose 
that yk ≠ ε, y'k = ε, port(x') ≠ k, the actual outputs in the 
corresponding transitions in the IUT are yk = ε, y'k ≠ ε respectively; 
2) suppose that yk = ε, y'k ≠ ε, port(x') ≠ k, the actual outputs in the 
corresponding transitions in the IUT are yk ≠ ε, y'k = ε respectively. 

Example 2: Consider two consecutive transitions <a/(ε, β, γ), 
c/(α, ε, γ)> (i.e. <t4, t5>) of 3p-FSM in Fig.2b. Compared it with 
its specification in Fig.2a, the output α has been “shifted” from t4 
to t5 while the output β has been “shifted” from t5 to t4. Within a 
distributed architecture, however, these output-shifting faults 
cannot be detected because all the testers receive their expected 
outputs in right order (Fig.3) although the IUT is actually faulty. 

 

 
        Fig.3: The expected behavior of each tester in Fig.2a. 
Remark 3: The sending and receiving of message x are denoted 
by !x and ?x respectively. 

Let synΔΓ denotes a coordination message from portΔ to portΓ. 
To ensure the solution to synchronization problems and the 
detection of output-shifting faults, the coordination messages 
should be added to the test sequences where necessary. The 
following rules will guarantee the synchronization of multiple 
testers and the detection of output-shifting faults in consecutive 
transitions tt' (t = (si, sj; x/y) and t' = (sj, sk; x'/y')). 

ALGORITHM 1: 
Step1: Testerport(x) inputs x to the IUT, 
Step2: If port(x') ∉ ports(y)∪{port(x)} then Testerport(x) sends a 
synchronization message to Testerport(x'). (This coordination 
message is necessary to resolve the synchronization problem 
between two testers.) 
Step3: While receiving an output from the IUT or a 
synchronization message from Testerport(x), Testerport(x') sends 
coordination messages to all the testers having potential output-
shifting faults. (These testers can be calculated by Definition2 and 
output-shifting faults can be detected by inserting these messages.) 
Step4: Testerport(x') inputs x' to the IUT. 

3. THE PROPOSED METHOD 
Formally, the proposed method exhibits a new solution of 

generating minimal test sequences that detect output-shifting 
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faults based on multiple UIO sequences. Firstly we design an 
auxiliary digraph G* from the given specification M, then the 
digraph can be applied to generate test sequences. In addition, by 
taking into account the costs of both transitions and coordination 
messages, a minimal synchronizable test sequence that detects 
output-shifting faults for M will be constructed as an RCPT over 
all the test segments of M in G*. 

3.1 The Description of the Proposed Method 
Consider a minimal and deterministic np-FSM M0 represented 

by a strongly connected digraph G = (V, E) (e.g. Fig.4a). In the 
first place, the proposed method constructs the first auxiliary 
digraph G' = (V', E') (e.g. Fig.4b) from G(V, E) according to the 
following steps: 

ALGORITHM 2:  
Step1: For each edge t = (si, sj; x/y) ∈G, create a vertex vt in G', 
Step2: For any two adjacent edges t = (si, sj; x/y) ∈ G and t' = (sj, 
sk; x'/y') ∈ G, create a fine edge ett' = (vt, vt'; labeltt') in G'. The 
initial vertex of ett' is vt and the final vertex of ett' is vt', 

2a) labeltt' = t, if there is no synchronization problem or 
potential output-shifting faults in tt', 

2b) labeltt' = t@co-msgs, if there exist synchronization 
problems or potential output-shifting faults in tt'. 

Remark 4: @ represents concatenation and co-msgs denote all 
necessary coordination messages in tt'. 
 

 
Fig.4: An example of 2p-FSM M0 and the first auxiliary 
digraph of M0 constructed by Algorithm2. 

With the aid of Fig.4b, multiple UIO sequences with necessary 
coordination messages for 2p-FSM in Fig.4a is shown in Table.2. 

Table.2: Multiple UIO sequences for M0 in Fig.4a. 
State UIO sequences                       Final state 

    s1 UIO1(s1) = [t2]        s3

UIO1(s2) = [t4synBAt5]        s1s2

UIO2(s2) = [t4t6]        s1

UIO1(s3) = [t5]        s1

UIO2(s3) = [t6synBAt1]        s2

    s3

UIO3(s3) = [t6t2]        s3

 

In the second place, the second auxiliary digraph G*(V*, E*) 
(e.g., Fig.6) for an np-FSM M (e.g., Fig.4a) is constructed by 

adding a set of bold and dashed edges and bold vertices to G'(V', 
E') (e.g., Fig.4b) according to the following steps: 

ALGORITHM 3: 
Step1: For each transition tk = (si, sj; x/y)∈E, add a bold vertex 
Vtk-sj and a bold edge (vtk, Vtk-sj, tk), 
Step2: For each bold vertex Vtk-sj and each UIOi(sj) for state sj, a 
dashed edge (Vtk-sj, vtl, co-msgs@UIOi'(sj)) is created with 
coordination messages co-msgs if necessary. (Here, tl is the last 
transition in UIOi(sj) and UIOi(sj) = UIOi'(sj)@tl and co-msgs are 
requisite when there exist synchronization problem or potential 
output-shifting faults between tk and the first transition in 
UIOi(sj).)  
Step3: Merge all the equivalent bold vertices. (Two bold vertices 
Vtk-sj and Vtl-sj are equivalent if the corresponding dashed edges 
associated with them have the same final vertices and labels. For 
example, in Fig.5, bold vertices Vt1-s2 and Vt3-s2 are equivalent 
since dashed edges associated with them have the same final 
vertices vt5, vt6 and labels synBAUIO1'(s2), synBAUIO2'(s2), 
respectively. Then they are merged into Vs2 in Fig.6.) 
Step4: For each dashed edge, if it is the unique dashed edge that 
leaves the relating bold vertex, then change the dashed edge into a 
bold edge. 

In step1, each bold edge (vtk, Vtk-sj, tk) represents the first 
transition in the test segment for tk. In step2, each dashed edge 
(Vtk-sj, vtl, co-msgs@UIOi'(sj)) represents a synchronizable UIO 
sequence that can detect output-shifting faults. All the equivalent 
bold vertices are merged in step3 to make the structure of digraph 
simpler and the purpose of step4 is to increase the likelihood of 
obtaining a weakly connected sub-graph consisting of bold edges. 
Table.3 lists the bold and dashed edges to be added to Fig.4b, and 
Fig.5 and Fig.6 show the constructed digraphs after step1, 2 and 
step3, 4 respectively. 

Table.3 A set of edges for each transition of M0 in Fig.4a.  
corresponding edge in G* tran test segment             last 

tran
bold edge dashed edge 

t1synBAUIO1(s2) t5 (Vt1-s2, vt5; synBAUIO1'(s2) ) t1 

t1synBAUIO2(s2) t6 

(vt1, Vt1-s2; t1) 

(Vt1-s2, vt6; synBAUIO2'(s2) ) 

t2synBAUIO1(s3) t5 (Vt2-s3, vt5;  synBAUIO1'(s3) ) 

t2UIO2(s3) t1 (Vt2-s3, vt1; UIO2'(s3) ) 

t2 

t2UIO3(s3) t2 

(vt2, Vt2-s3; t2) 

 

(Vt2-s3, vt2; UIO3'(s3) ) 

t3synBAUIO1(s2) t5 (Vt3-s2, vt5; synBAUIO1'(s2) ) t3 

t3synBAUIO2(s2) t6 

(vt3, Vt3-s2; t3) 

 (Vt3-s2,vt6; synBAUIO2'(s2) ) 

t4synBAUIO1(s3) t5 (Vt4-s3, vt5; synBAUIO1'(s3) ) 

t4UIO2(s3) t1 (Vt4-s3, vt1; UIO2'(s3) ) 

t4 

t4UIO3(s3) t2 

(vt4, Vt4-s3; t4) 

 

(Vt4-s3, vt2; UIO3'(s3) ) 

t5 t5UIO1(s1) t2 (vt5, Vt5-s1; t5) (Vt5-s1, vt2; UIO1'(s1) ) 

t6 t6UIO1(s1) t2 (vt6, Vt6-s1; t6) (Vt6-s1, vt2; UIO1'(s1) ) 

  
The final step of test generation based on multiple UIO 

sequences involves finding a minimal tour of G* over each bold 
edge at least once. This is an instance of RCPP. As is shown in 
section 2.2, if the bold edges form a weakly connected spanning 
sub-graph, a polynomial-time algorithm can be used to obtain an 
RCPT over the bold edges in the digraph covering all the test 
segments at least once. The procedure of finding an RCPT is 
reduced to two phases: constructing a minimal rural symmetric 
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augmentation digraph of G* and finding an Euler tour on the 
digraph. Otherwise, if the bold edges cannot form a weakly 
connected spanning sub-graph, some heuristic algorithms for 
obtaining an RCPT over the bold edges of the digraph yields a test 
sequence whose cost is sub-optimal. They can all be well solved 
using any existing classical algorithm as we introduce in section 
2.2. We just need to apply our constructed digraph to the 
algorithms. For example, an RCPT over all the bold edges in 
Fig.6 (For the minimal rural symmetric augmentation digraph see 
appendix A.): [t1, synBA, UIO2'(s2), t6, UIO1'(s1), t2, UIO2'(s3), t1, 
t3, synBA, UIO1'(s2), t5, UIO1'(s1), t2, t6, synBA, t1, synBA, t4, synBA, 
UIO1'(s3), t5] yields the test sequence [α/(a, c), synBA, β/(ε, c), 
β/(ε, c), β/(ε, b), β/(ε, c), synBA, α/(a, c), α/(a, c), synBA, β/(ε, c), 
synBA, α/(ε, c), β/(ε, b), β/(ε, c), synBA, α/(a, c), synBA, β/(ε, c), 
synBA, α/(ε, c)] with total costs of 14 transitions and 7 
coordination messages. It is a synchronizable test sequence that 
detects output-shifting faults. In this test sequence, the test 
segment for t1 is [α/(a, c), synBA, β/(ε, c), β/(ε, c)], for t6 is [β/(ε, 
c), β/(ε, b)], for t2 is [β/(ε, b), β/(ε, c), synBA, α/(a, c)], for t3 is 
[α/(a, c), synBA, β/(ε, c), synBA, α/(ε, c)], for t5 is [α/(ε, c), β/(ε, 
b)], for t4 is [β/(ε, c), synBA, α/(ε, c)]. 

  
Fig.5: The digraph G*(V*, E*) obtained from the digraph 
G'(V', E') in Fig.4b after step1 and step2. (The newly added 
vertices and edges are shown in Table.3. Each bold edge (vtk, 
Vtk-sj, tk) represents the first transition in the test segment for 
tk. And each dashed edge, together with one of its subsequent 
fine or bold edges, forms a UIO sequence for the 
corresponding state. For example, UIO1'(s1) and its 
subsequent t2 form UIO1(s1) that is a UIO sequence for state 
s1.) 

3.2 Properties of the Proposed Method 
Given the digraph G = (V, E) of np-FSM M = (S, Σ, Г, δ, λ, s0), 

let | V | = | S | = r, | E | = m, and | I | = | Σ1 ∪ Σ2 ∪ ... ∪ Σn | = p. 
In Algorithm2, each transition of M leads to only 1 vertex and any 
two consecutive transitions lead to 1 edge in G'. Thus the first 
auxiliary digraph G' = (V', E') has m vertices and 

( ( ) ( ) ( ))v v v
v V

G G Gd d l+ −

∈

× −∑ edges. Since there are at most | I | 

edges that leave each vertex in G, so 0 ≤ ≤ | I | = p and 0 

≤ , ≤ | E | = m, and then G' has O(pm) edges. In 
Algorithm3, for each vertex in G' at most 1 corresponding bold 
vertex will be added in G*. Given the number of UIO sequences 
for each state is less than q, then each newly added vertex leads to 
at most q edges in G*. As a whole, the ultimate auxiliary digraph 
G*(V*, E*) has at most 2m vertices and O((p + q)m) edges. 

( )v Gd +

( )v Gd − ( )v Gl

 
Fig.6: The ultimate digraph G*(V*, E*) after step3 and step4. 
(Vt1-s2 and Vt3-s2 are merged into Vs2, Vt2-s3 and Vt4-s3 are merged 
into Vs3, and Vt5-s1 and Vt6-s1 are merged into Vs1 respectively. 
Dashed edge (Vs1, vt2, UIO1'(s1) ) is changed into a bold edge 
because it is the unique dashed edge leaving bold vertex Vs1. 
Test generation based on multiple UIO sequences involves 
finding a minimal tour of this digraph over each bold edge at 
least once.) 

3.3 Comparison with the Existing Methods 
In the field of distributed systems testing, there are many well-

done literatures concerning the test sequences generation. For 
example, Chen [6], Hierons[9] and Shen[13] consider similar 
topic as we do in this paper, however, our proposed method is 
quite different from all these papers. In addition, all these 
methods have their own deficiencies respectively. Table.4 shows 
a brief comparison of functions of these methods. 

The proposed method can also deal with single UIO sequence. 
The situation of single UIO sequence has been well considered in 
[9]. However, for the same np-FSM (i.e. Fig.4a) used in [9], we 
will show that our method can yield a better result. When 
applying our method to the condition in [9], i.e. the UIO sequence 
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for s1 is [β/(ε, b)], for s2 is [β/(ε, c), β/(ε, c)] and for s3 is [α/(ε, c)], 
the digraph G^(V^, E^) (Fig.7) is constructed. 

Table.4:  Functions based comparison 

Method Synchro
nization 

Output 
shifting 

Single 
UIO 

Multiple 
UIO 

Ours     √ √ √ √ 

    Chen[6] √     −     − √ 

Hierons[9] √ √ √      − 

Shen[13]     −     −     − √ 

 

Remark 5: “√” denotes that the method covers the corresponding 
situation, while “−” denotes the method does not consider the 
situation. 

 
Fig.7: The digraph G^(V^, E^) under the condition that UIO 
sequence for each state has been given beforehand. (Since the 
UIO sequence for each state has been given, there is only one 
dashed edge leaving each bold vertex and these bold vertices 
can be eliminated by making a combination of edges 
associated with them. The resultant digraph has a more 
likelihood to be a weakly connected digraph. For the same 2p-
FSM, the resultant digraph in [9] is not weakly connected.) 

 Obviously, the bold edges in G^ form a weakly connected 
spanning sub-graph. Then a polynomial-time algorithm can be 
used to obtain an RCPT (For the minimal rural symmetric 
augmentation digraph see appendix B.): [t1, synBA, t4, t6, t2, synBA, 
t5, t1, t3, synBA, t4, t6, synBA, t1, synBA, t4, synBA, t5, t2, t6, synBA]. This 
yields a minimal synchronizable test sequence [α, synBA, β, β, β, 
synBA, α, α, α, synBA, β, β, synBA, α,  synBA, β, synBA, α, β, β] that 
detects output-shifting faults. It has 14 transitions and 7 
coordination messages. For the same question, the method in [9] 
generates a minimal synchronizable test sequence [syBA, α, postAB, 
β, β, β, syBA, α, α, α, postAB, β, β, syBA, α, syBA, β, syBA, α, syAB, β, 
β, β, syBA, α, β, β] that detects output-shifting faults with 18 

transitions and 9 coordination messages. It has 4 more transitions 
and 2 more coordination messages than the test sequence of our 
method. 

4. CONCLUSIONS AND FUTURE WORK 
Synchronization problems and output-shifting faults arise in 

distributed testing since there is no global clock available. This 
paper has introduced a new approach that generates 
synchronizable test sequences that detect output-shifting faults 
based on multiple UIO sequences. The procedure of test 
generation can be phrased as an instance of the rural Chinese 
postman problem (RCPP). The resultant optimization problem 
may be resolved using standard algorithms. 

When constructing auxiliary digraph from a given FSM, we use 
vertices to denote transitions and edges to represent two 
consecutive transitions. The application of the proposed method 
illustrates that it constructs a relatively simpler digraph and the 
resultant test sequences have a better characteristic than the 
existing methods. 

The proposed method exhibits a new method of generating 
synchronizable test sequences that detect output-shifting faults 
utilizing multiple UIO sequences. However, the paper does not 
consider the overlapping problems. How to address the 
overlapping problems effectively and how to choose UIO 
sequences more properly will be considered in the future work. 
Additionally, for some np-FSMs, the output-shifting faults can be 
detected utilizing test subsequences instead of exchanging 
coordination message. Producing the sufficient and necessary 
conditions for the existence of such test subsequences and finding 
minimal-length subsequences are included in our future work. 
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APPENDIX 
A: Rural Symmetric Digraph for Fig.6 

 

Fig.9: The minimal rural symmetric augmentation digraph 
for the digraph G^(V^, E^), and test generation is reduced to 
find an Euler Tour in this symmetric and strongly connected 
digraph. 
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Fig.8: The minimal rural symmetric augmentation digraph 
for the digraph G*(V*, E*), and test generation is reduced to 
find an Euler Tour in this symmetric and strongly connected 
digraph. 
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