
Fall 2014 Northwestern University Ming-Yang Kao

EECS 336: Design and Analysis of Algorithms
Weekly Problem Set #2

Class Homepage: www.cs.northwestern.edu/~kao/eecs336-algorithms/index.htm

Posted on the Class Homepage: Tuesday, October 7, 2014.

Due Time: the start of class on Tuesday, October 14, 2014.

Policy for This Problem Set: Different problem sets may have different policies. This problem
set is to be done by one student singly. To answer the questions in this problem set, you may
consult your textbook, your lecture notes, the Internet, and any materials that you can find in
libraries. You may also discuss solution ideas for these questions with the instructor or the teaching
associates, but no one else. You may not copy answers from other people, including those from
your fellow students or those posted on the Internet. If you copy all or portions of your answers
from other people, you will receive 0 point for the entire problem set. If two students have identical
or essentially identical answers but the original sources of the answers cannot be determined, both
students will receive 0 point for the entire problem set.

Questions: There are 3 questions.

1. (40 points) This question modifies Exercise 15.4-6 on page 397. We define a double-increasing

sequence to be a sequence of numbers 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 with 𝑝𝑝 ≥ 2 such that there exists an index
k with 1 ≤ 𝑘𝑘 ≤ 𝑝𝑝 − 1 for which 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 is monotonically increasing and 𝑥𝑥𝑘𝑘+1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝
is also monotonically increasing. For instance, the sequence 10, 19, 8, 12, the sequence 10, 19,
28, 33, and the sequence 10, 19, 28, 28 are double-increasing sequences but the sequence 10,
19, 8, 2 and the sequence 10, 19, 8, 8 are not.

Give a little-o(𝑛𝑛2)-time algorithm to find the longest double-increasing subsequence of a
sequence of n numbers. Prove the correctness of your algorithm and analyze the time
complexity of your algorithm.

Partial Credit: You will receive 25 points instead of 40 points if your algorithm has a time
complexity of big-O(𝑛𝑛2) but not little-o(𝑛𝑛2).

2. (30 points) This question is a special case of the longest common subsequence problem in
Section 15.4. Give an O(Kn)-time O(n)-space algorithm for the following algorithmic problem.
Prove the correctness of your algorithm, and analyze the time complexity and space complexity
of your algorithm.

Input: a positive integer K and two sequences 𝑋𝑋 = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 … 𝑥𝑥𝑛𝑛 and 𝑌𝑌 = 𝑦𝑦1𝑦𝑦2𝑦𝑦3 … 𝑦𝑦𝑛𝑛 both of
length n.

Output: “Yes” if the length of the longest common subsequence of X and Y is at least n – K;
“No” otherwise.

1 of 2 pages

http://www.cs.northwestern.edu/%7Ekao/eecs336-algorithms/index.htm

Fall 2014 Northwestern University Ming-Yang Kao

3. (30 points) Give an algorithm for the following algorithmic problem. Your algorithm should
run in polynomial time. Prove the correctness of your algorithm and analyze the time
complexity of your algorithm.

Input: a positive integer K and an undirected graph G where each edge has a positive weight.

Output: for each pair of vertices x and y, a shortest path among all paths between x and y that
have exactly K edges.

2 of 2 pages

