Improving Separation of Harmonic Sources with Iterative Estimation of Spatial Cues

Jinyu Han1, Bryan. Pardo
The Interactive Audio Lab2, Northwestern University, IL USA

1 jinyuhan@gmail.com 2http://music.cs.northwestern.edu

ABSTRACT
Spatial cues (cross-channel amplitude and phase difference coefficients) have been widely used in source separation of two-channel mixtures. However, as sources increasingly overlap in the time-frequency domain or the angle between sources decreases, these spatial cues become unreliable. We introduce an iterative method to re-estimate the spatial cues for mixtures of harmonic sources. Results on a set of three-source mixtures from musical instruments show this approach significantly improves separation performance of two existing time-frequency masking systems.

1 Introduction
DUET [1] and ASE [2] are blind approaches to separating sources in two-channel anechoic acoustic mixtures. Both use spatial cues to estimate time-frequency masks for separating sources. Fig. 1 illustrates how DUET uses spatial cues in stereo source separation. Spatial cues become obscured as the angle between sources decreases, hurting performance.

![Image](image1.png)

Figure 1 How to use Spatial Cues?

2 System Description
Given a mixture, we estimate the sources as illustrated in Fig. 2.

![Image](image2.png)

Figure 2 System Overview

3 Evaluation
The instrument recordings used in the testing mixtures are individual notes played by horn, bass clarinet and oboe, taken from the instrument samples made available by the University of Iowa [3]. Five systems are compared in our experiments. They are DUET with ground truth pitch information for spatial cues refinement (IDEAL), unmodified DUET [1], DUET with spatial cues iterative refinement (DUET+ITER), unmodified ASE [2] and ASE with spatial cues iterative refinement (ASE+ITER). Ground truth pitches are the pitches estimated from the original recordings of the isolated sources, prior to mixing.

3.1 Experiment I
Performance results are shown in Fig. 3. In this figure, each data point indicates an average result for 30 mixtures. The proposed system (DUET+ITER) consistently outperformed the existing systems' performance (excluding the system using ground truth pitches) for nearly all the mixing angles above 18°. The iterative spatial cues estimation improves DUET or ASE when the sources are close to each other (in Fig. 2, this is the case when the mixing angle is between 18° and 30°).

![Image](image3.png)

Figure 3 Spatial cue re-estimation based on Harmonic Masks

3.2 Experiment II
Performance results from mixtures created using different mixing angle are shown in Fig. 4. In this figure, each data point indicates an average result for 30 mixtures. The proposed system (DUET+ITER) outperforms the baseline approaches, especially as the angle between two adjacent instruments falls below 40 degree.

![Image](image4.png)

Figure 4 Performance of different methods at mixing angle 20°

4 Conclusions
We have proposed a method for improved source separation of anechoic two-channel mixtures of harmonic sound sources. We use an existing source separation system to do the initial estimate and improve the results by incorporating the pitch and energy distribution information to further refine the spatial cues. Results on a database of three-instrument mixtures show this approach improves both the DUET and the ASE source separation systems, especially as the angle between two adjacent instruments falls below 40 degree.

Acknowledgements
We would like to thank the reviewers for their helpful comments and suggestions; This work is supported by National Science Foundation Career Award (grant 0643752).

References

More references are listed in the paper.

Image by John Woodruff

Image by John Woodruff

Image by John Woodruff

Fig. 5 Signal to Noise Ratio of different methods with the mixing angle changing from 15° and 50°