Shape Representation
Basic problem
We make pictures of things
How do we describe those things?
Many of those things are shapes
Other things include motion, behavior…
Graphics is a form of simulation and modeling

Two general types of representations
Surface representations
Concerned only with the surface of the shape, not the interior
Generally more efficient at representing surface
Polygons are one example
Volume representations
Also concerned with interiors, surfaces can be extracted

Surface reps (Boundary reps or “B-reps”)
Parametric surfaces
Basic idea
Define curves and surfaces using parametric formula
Allow modelers to manipulate shape with "control points"

Structure
Use parametric representations
Q(t) = T M G, where
T = [t^3 t^2 t 1]
Segment runs from 0 to 1 in t
M = basis matrix (4x4)
G = geometry matrix (4x4)

Geometry matrix
Contains four geometry elements (pts, vectors)
These are the controls the user manipulates in modeling
curves interpolate or bend towards them
Every differently shaped curve will have a different geometry matrix

Basis matrix
Describes relative weighting of geometry as t varies
Described by the blending function
Different curve types (see below) have different bases
Basis is constant for a given curve type

Curve issues
Locality
If I change a geometry element, how much of the curve changes?

Joining
For complex curves/shapes, must join two or more curves together
Would like join to be continuous (“smooth”)
G0, G1, C1, C2 continuity

Effect of transformations
Invariance:
Transform(Q(t)) = T M transform(G)?
Affine invariance
Under scales, translations, rotations
Perspective invariance
2D curves from projected 3D control points

Convex hull property
Curve lies inside convex hull of geometry
Convex hull: smallest convex polygon (hedron) that contains control points
Useful for trivial rejects in clipping, intersection tests
Useful for added intuition in modeling

Types of curves

Beziers

Geometry

[\text{P}_1 \text{P}_2 \text{P}_3 \text{P}_4]

Four control points

Curve interpolates endpoints

Slope at ends equals slope of [\text{P}_2-\text{P}_1], [\text{P}_4-\text{P}_3]

Joining

G0: overlay endpoints

G1: give [\text{P}_4-\text{P}_3], [\text{P}_5-\text{P}_4] same slope

C1: same magnitude

C2: hard

Locality: none

Invariance: affine, not perspective

Convex hull property

B-Splines

Problem:

Joining with continuity is difficult
There is no C2 continuity

Solution:

Curves (sequences of segs) are defined by a sequence of n control points
Each sequential set of 4 points defines a segment
Each new segment shares 3 points with previous segment

Knots are the boundaries between each curve segment in t

Examples

Given a B-spline with n control points
There will be n-3 curve segments
There will be n-2 knots

Given 4 control points
one segment
two knots (begin and end)

Given 10 segments
13 control points
11 knots

Uniform, nonrational B-splines

Uniform: knots are spaced at equal intervals of parameter t
Nonrational: curve does not use ratios of two polynomial equations
Joining: C2 continuity is guaranteed
Locality: only the 4 segments containing a ctrl pt are affected
Invariance: affine, not perspective
Convex hull property for each segment

Other issues:

No control points are interpolated
Overlapping control points allow interpolation
But at the cost of continuity

Nonuniform, nonrational B-splines

Nonuniform: curve segs can be defined over non-equal intervals of t
As before but:
Can overlap knots
Allows interp points with better control of continuity
Can insert knots
Allows arbitrary control of locality
Nonuniform, rational B-splines (NURBS)
Rational: \(x(t) = \frac{X(t)}{W(t)} \), \(y(t) = \frac{Y(t)}{W(t)} \)
Like before but:
Invariance: affine and perspective
Can define conics (circles, parabolas…)

Patches
A generalization from 1D to 2D
Most of previous discussion applies
General approach
Intuitively
Imagine sweeping a parametric curve \(Q(s) \) along a dimension \(t \)
The geometry vector, and thus the shape of \(Q(s) \), changes as a function of \(t \)
You defined an arbitrarily shaped patch!
In equations
\[P(s,t) = S M Q(t) = S M G M^t T^t \]

Critique
Advantages
Accuracy: polys/lines are always only approximations of curves
Succinctness: need lots of polys to describe one smooth surface
Modeling: controlling shape
twiddling vertices is annoying, need higher level control
Problems
Rendering speed
Complex models may have as many patches as polygonal models
Rendering patches is slower
Portability
Patches are not the lowest common denominator

Subdivision surfaces
New research
Give much better control of locality
A patch can be subdivided into smaller patches
In this way, a hierarchy of locality is formed

Volume representations
Constructive Solid Geometry (CSG)
Domain: engineering and machining
Basic idea:
Shapes are described with set operations on primitive volumes
Union, difference, intersection
Such a description describes “how” to construct a shape
Structure
A binary tree
Leaves are primitives
Internal nodes perform set ops on children

Critique
Advantages
A continuous description
Describes the modeling process
Some powerful modeling functionality
Disadvantages
Joins are all discontinuous
Poor control of locality
Hard to render

Discrete volume reps (voxels)
Domain: largely medicine and science
Basic idea:
 We surround the shape (or region) with a box
 We sample the entire box with a regular grid
 Each sample is called a “voxel” (volume pixel)
 So there are many “shapes” in the volume
Structure
 a 3D grid of points, with at least one value at each point
 value represents “density” in most settings
Critique
 Advantages
 Captures interiors well
 Disadvantages
 Takes up a lot of space!
 \[256^3 \times 4 = 67\text{ megs basic input}\]
 Fairly hard to render
 Ray tracing
 Surface extraction using Marching Cubes Alg
 This is changing with Mitsubishi card

Implicit functions
Domain: amorphous, merging shapes; bounding volumes
Basic idea:
 We have a function in 3D space
 The surface is all points w/ same value in that func: isosurface
 \[f(x,y,z) = k\]
Example: sphere
 \[x^2 + y^2 + z^2 = 1\]
 We add complexity with collections of these
Structure
 A collection of generator shapes
 For each of these generators \(g\)
 A distance function \(d\) which returns distance from \(g\)
 A potential function \(f\) assigns a value to each distance \(d\)
 A blending function \(B\) merges potentials – often simple addition
Critique
 Strengths
 Good for collision detection
 Can represent conics like spheres, cylinders
 Used in blobby modeling for molecules, etc
 Can merge shapes by moving the generators
 Problems:
 Constraints needed. Semicircle?
 Joining is a problem
 unwanted merges/seps
 Also hard to render: voxelize, ray trace
New work addresses some control problems
Other and newer approaches
 BSP trees
 These can also be used as modeling reps
 Advantage in hierarchical formation
 Enables set ops and fast collision detection
Main problem:
avoiding polygonal explosion makes implementation very hard

Particle systems
 Domain: for moving clouds of things, e.g. clouds, fireworks, flocks
 Structure:
 A set of points or particles
 Each point has a largely random behavior and a lifespan
 Particles are rendered as blurs onscreen or sprites

Fractal models
 Domain: clouds, mountains, sea
 Fractals are used to generate shape procedurally
 Usually these are converted into another representation

L-systems
 Domain: plant description
 Grammars used procedurally to describe plant development
 Eventually converted into another representation

Distance fields
 Can be viewed as adaptively sampled implicit function
 Because it is a sampled rep, can deviate from functional limitations

Point representations
 Domain: very large (1 billion vertex) models
 Like polygons, but no edges, just vertices
 Vertices have associated color, orientation
 Basic problem: how to fill the gaps?
 “Splatting” from volume rendering
 Colors are “blurred” across local screen region
 Until recently, main problem was aliasing