
Dear Dr. Fonseca,

we thank you and the referees for reviewing our paper. Below we provide

detailed answers to the reviewers’ comments. Our responses are marked by (*).

We highlight the changes in the manuscript using blue italic font.

Best regards,

Amit Mondal

Ionut Trestian

Zhen Qin

Aleksandar Kuzmanovic

Reviewer #1: I'm satisfied with the authors corrections, but I still have three questions

1) as another reviewer pointed out, it is unclear what was implemented by the authors in MirrorPlane.
Is it only a monitoring tool? Or is it also a scheduler prototype? In case it is a scheduler prototype, how
was it tested? What was the experimental setup used to generate Figure 12? Why do the authors claim
that "the replication scheduling module is currently implemented in an event-driven simulator where
we replay our collected traces and hence validate our solution"? Isn't the replication scheduling also
implemented in MirrorPlane?

(*)

Indeed, the monitoring part of MirrorPlane is fully implemented by changing

the Bitflu BitTorrent client just to monitor swarms.

As for the scheduler, it is a prototype that is built inside an event-driven

simulator, the same event-driven simulator that we introduced in section

4.1.2.

Figure 12 was obtained by replaying the traces we collected in section

4.1.1 in the simulator described in section 4.1.2. It provides an aggregate

picture across torrents for the upload/download imbalance without and with

MirrorPlane.

We further clarify this on page 17, paragraph 2 of section 5.

“Note that the monitoring component is fully implemented by modifying the

Bitflu BitTorrent client and incorporating characteristics that we detail

below. Because deploying and testing MirrorPlane inside an ISP is difficult,

the scheduling component is currently implemented and evaluated as a module

in the event-driven simulator we described in Section 4.1.2.”

And with regards to Figure 12 we add on page 18, paragraph 6 of section 5.

“The same setup was employed here as in Section 4. We present these results

in order to get a big picture view of the functioning of our system. Top

swarms now have the necessary resources at almost all intervals of time.

Torrents beyond rank 30 have very limited demand as leecher arrivals are

rather sparse and unpredictable and as a result, our algorithm does not

manage to efficiently place resources to such torrents.”

2) the authors claim that they "abandon the common approach of deploying novel incentives for
cooperation". Nonetheless, the download of (unrequested but recommended) content could be a strong
enough incentive for cooperation. I suggest the authors discuss this possibility. Even if users are not
interested in the downloaded content, they might be willing to download unrequested content to share, for
bartering purposes. See

Daniel Sadoc Menasché, Laurent Massoulié, Donald F. Towsley: Reciprocity and Barter in Peer-to-Peer
Systems. INFOCOM 2010: 1505-1513

Thinking in terms of incentives, if a user downloads unrequested content (and shares it while
downloading) 1) he gains, by getting content that might be helpful to him; 2) the system gains, as
described in the paper. Actually, the download of additional content is an incentive for users, that
otherwise would leave the system, to stay online longer (even though seeding is prevalent, there is no
incentive to altruistic seeding, but there ARE incentives to download and share unrequested content).

(*)

We agree with the reviewer that downloading unrequested content could indeed

be incorporated in a novel incentive mechanism for BitTorrent. We acknowledge

this by incorporating the following paragraph in the paper on page 19,

paragraph 4 of section 6 and cite the recommended reference.

“Furthermore, the authors of [38] observe that the download of unrequested

but recommended content could be a strong incentive for cooperation among

users. Even without a direct interest in the content that is placed on their

machines, users might still be willing to download the content for bartering

purposes. The authors study direct reciprocity systems similar to the ones

employed by BitTorrent and find out that in some cases it is crucial that

users download content for the purpose of bartering as it can lead to higher

performance with marginal overhead.”

3) how do you infer the supplied (upload) bandwidth and the demanded (download) bandwidth in a
swarm, e.g., to plot Figure 5(b)? In a real swarm, aggregate download rate should never be larger than
aggregate upload rate.

(*) Figure 5 represents the upload bandwidth and the download bandwidth

for a swarm inside a single ISP. This is already specified in the caption.

Basically this covers only the peers that a swarm has inside an ISP. While

for overall swarm aggregates the download rate should never exceed upload

rate as the reviewer observes, this it is not the case if analyzing a swarm

inside a single ISP (there exist peers outside the ISP also). For example,

the download rate might be higher than the upload rate for a swarm inside

an ISP with asymmetric connections that has some peers outside the ISP with

better connections (in a campus environment for example).

Reviewer #2: With respect to point (1) of my first review, Piatek et al. (2009) say that "local peers are not
always faster, particularly for users in regions where asymmetric bandwidth capacities are typical". This
is why in their experiments, Piatek et al. swap distant for local peers only if the switch does not degrade
performance (because otherwise a peer would not follow the protocol). On the contrary, the authors
explicitly say on page 13 that their algorithm chooses a local peer, whenever there is a local peer with the
file. And this peer selection occurs irrespectively of performance. So in point (1) I was asking whether
this peer selection policy degrades the performance of some peers (even though it improves aggregate
performance). I guess that the authors didn't understand my question, since in their answer they talked
about what a seeder does (who they say gives priority to the original torrent) and not about the leecher.

(*) The reviewer talks about swapping peers which we never suggest doing in

our algorithm. Indeed, according to the BitTorrent protocol, a BitTorrent

client is free to look for other peers as long as the ones he currently has

do not saturate his download bandwidth. We do not change the BitTorrent

protocol in that respect. What we do is suggest local peers that have the

file when the client requests them. If local peers will not saturate his

download bandwidth, the client is free to look for distant peers that indeed

might offer better performance. That is why there is still some amount of

inter-AS traffic left.

If the client is connected to a distant peer that offers him a good

performance download, we never suggest a swap. Only when the client requests

peers we suggest local peers that have the file. So no, performance is not

degraded since if we could not identify local peers that would saturate his

download bandwidth the client is free to connect to distant peers and stick

with them if they offer him good performance.

With respect to point (2) of my first review, the paragraph that the authors added on page 19 doesn't
clearly describe the issue. They should more clearly explain what a change in the context means.

(*)

We agree with the reviewer and in order to explain what we mean by a change

in context in this case we have added the following sentence on page 20,

paragraph 8 of section 6.

“In this case, by change of context we mean users downloading content that

they are not interested in on their computers as opposed to the previous case

when they are only downloading content that they are directly interested in.”

With respect to point (3) of my first review, it is not clear to me from the text that when replicating
content peers download content only from local peers. I suggest that the authors clarify this.

(*) We agree with the reviewer that this is not clearly explained in the

paper and we add the following on page 11, paragraph 4 of section 3.2.

“Finally, when actively replicating content, peers download content only from

local peers, thus does they do not generate any more inter-AS traffic.”

With respect to the last point of my first review (about Algorithm 3.1), it is still not clear from the text
what Algorithm 3.1 does. The authors should provide more details in Algorithm 3.1 and/or the discussion
below it. Right now, by looking at Algorithm 3.1, it seems that there are only two cases:
(a) if aggrUpload > aggrDownload + 2 * stddev, then do nothing
(b) if aggrUpload < aggrDownload + 2 * stddev, then add to the priority queue with the goal of
replicating

(*) We agree with the reviewer about the lack of clarity of Algorithm 3.1

and the surrounding text. Therefore we add the following text on page 11,

paragraph 4 of section 3.2.

“Note that in the case when i.e., aggrDownload + 2stdev < aggrUpload <

aggrDownload + 3stddev this is the case when the swarm has enough upload

capacity so we do not do anything, we do not take resources from this swarm

otherwise it will move to the previous case and we will have to actively

replicate it. Also, when i.e., aggrUpload < aggrDownload we do not actively

replicate as upload is already scarce and therefore we do not want to

increase load. The last two cases are not included in the algorithm as they

result in no action.”
