

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

1

Abstract—I describe a procedural animation system that uses
techniques from behavior-based robot control, combined with a
minimalist physical simulation, to produce believable character
motions in a dynamic world. Although less realistic than motion
capture or full biomechanical simulation, the system produces
compelling, responsive character behavior. It is also fast,
supports believable physical interactions between characters such
as hugging, and makes it easy to author new behaviors.

Index Terms—Virtual characters, interactive narrative,
procedural animation.

I. MOTIVATION

NTERACTIVE narrative and similar AI-intensive applications
require characters to perform a wide range of actions and

gestures at run-time, the details of which may be difficult to
anticipate at authoring-time. In the game industry, character
animation is generally done either through motion-capture or
hand-authored key-framing. Run-time animation is then a
problem of selecting and blending pre-authored animation
clips from a large library based on the behavior desired for the
character and the geometric configuration in the character’s
immediate vicinity. These techniques can produce very
realistic motions, but do so at a tremendous authoring cost.
Not only do separate motions need to be captured for each
character action, but they may need to be separately captured
for different characters, for different variations on the
character’s motion, and for different objects being used. For
example, sitting in a chair can require different animation clips
depending on the type of chair, its height, and the character’s
height. Although some of this may be automated (see [1-4]),
generating large libraries of character animations is still
extremely labor-intensive, making it expensive for the game
industry and prohibitive for universities, independent
developers, and solo artists.

II. MOTION SYNTHESIS
 The natural alternative would be to compute motions
algorithmically from first principles given some specification
of the desired character behavior. These are sometimes
divided into procedural animation systems, in which the
animation algorithm is able to specify joint angles directly,
and dynamic simulation systems, in which the output of the

1 Manuscript received November 25, 2008. Ian Horswill is with

Northwestern University, Evanston, IL 60208 USA (847-467-1256; fax: 847-
491-5258; e-mail: ian@northwestern.edu).

algorithm are forces or torques that control a separate physical
simulation of the body.

Some of the earliest motion synthesis systems addressed
animal behavior. Reynolds [5] described a system for
computing the group behavior of flocking birds. Sims [6] used
genetic algorithms to evolve bodies and locomotion
controllers for synthetic agents. Tu and Terzopolis [7]
implemented a dynamic simulation system that controlled a
swimming fish that responded to environmental cues.

There has also been a great deal of work on animating
bipedal motion [8]. Common approaches include kinematic
solutions that compute joint angles without consideration of
dynamics [9, 10], dynamic solutions that compute torques to
be fed through physics [11-13], and hybrid approaches [14].

Many motion synthesis systems structure character control
in terms of discrete behaviors that can be triggered by specific
environmental or endogenous stimuli; such systems are
sometimes referred to as behavioral animation. A number of
architectures and frameworks have been proposed for
controlling behavioral animation systems. Devilliers et al.
developed a programming environment for developing
animation behaviors based on hierarchical, parallel state
machines [15]. Blumberg and Galyean [16] described a
general behavior-based architecture for controlling character
bodies and negotiating which behaviors had access to which of
a body’s degrees of freedom. Regelous’ Massive system [17],
used for large-scale crowed simulation in film and television,
allows animators to specify character behavior using fuzzy
logic [18].

There are also a few general-purpose systems that perform
motion synthesis. Goldberg and Perlin’s Improv procedural
animation system [19] provides a number of scriptable
behaviors for use in interactive narrative and other
entertainment applications. Badler et al.’s Jack system [20-22]
performs low-level control of humanoid bodies using a
combination of parallel state machines and constrained
inverse-kinematics, and provides a higher-level control
interface based on natural language and AI planning
techniques. Although not a procedural animation system per
se, SmartBody [23] provides a set of scheduling and
synchronization mechanisms for blending and controlling
animations, including procedurally generated ones. Natural
Motion’s Euphoria system [24], which provides a set of
controllers for humanoid motor behaviors that can be
connected to a game engine’s physics system to control
character behavior. Euphoria has been used in a number of
recent titles, most notably Grand Theft Auto IV [25] and Star

Lightweight Procedural Animation with
Believable Physical Interactions

Ian Douglas Horswill1

I

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

2

Wars: The Force Unleashed [26]. Although the exact
capabilities of Euphoria have not been published, the
Eurphoria:core system is available as part of a pre-packaged
end-user application called Endorphin [27], which supports 9
arm behaviors ranging from “Hands Reach and Look At” to
“Hands Protecting Groin,” 3 leg behaviors, and 14 whole-
body behaviors, such as “Catch Fall” and “Writhe in Mid-
Air”.

Despite this extensive work, versatile, extensible systems
for motion synthesis that support complex physical
interactions between character and the environment are still
largely unavailable. As a result, most interactive narrative
systems are built using commercial game engines such as
those of Half-Life 2 [28] or Unreal Tournament 3 [29],
although Mateas and Stern’s Façade being a notable exception
[30]. Because these game engines are not designed for
interactive narrative applications, they often require authors
either to develop extensive animation assets or limit
themselves to the behavioral repertoire of typical first-person
shooter characters.

III. TWIG
 In this paper, I describe Twig, a fast, AI-friendly procedural
animation system that supports easy authoring of new
behaviors. Twig provides behaviors for locomotion, object
manipulation, and gesturing, and allows characters to interact
physically with each other and with their environments in a
believable manner. It also allows programmers to define new
behaviors by composing simple control loops. Character joints
are controlled directly in Cartesian space (as opposed to joint
coordinates), using whatever combination of kinematic,
dynamic, and constraint-based control modes are appropriate.
 The system is structured in roughly four layers (Fig. 1.
Twig software stack). First, a minimalist physics simulation
provides the back-end to all motion control. It provides both
dynamics simulation and resolution of collisions and
kinematic constraints. Above this layer is a basic motion
control system that implements functions such as limb control,
posture, and walking. This layer is then controlled by a
behavior-based system, similar to those used in robotics [31]
and virtual creature systems [32]. These higher-level
behaviors are driven in part by a simple attention simulation.
Characters can be run either autonomously, controlled by a
separate system using and RPC interface, or scripted directly.
 It’s interesting to note that the dynamic simulation actually
simplifies control, allowing the use of relatively crude control
signals, which are then smoothed by the passive dynamics of
the character body and body-environment interaction; similar
results have been found in both human and robot motor
control [33]. Indeed, Twig shows that surprisingly simple
techniques can generate believable motion and interaction.
Much of the focus of this paper will be on ways in which Twig
is able to cheat to avoid doing complicated modeling or
control, while still maintaining believability. This paper is
indebted to the work of Jakobsen [34] and Perlin [19, 35, 36],
both for their general approaches of using simple techniques to
generate believable motion, and for specific techniques noted
below.

Twig is built on the Microsoft XNA platform [37] and is
very efficient, running easily at 60Hz on a single core of a
low-end machine. It is free, open-source software distributed
under the Lesser Gnu Public License (LGPL) [38].

IV. LIMITATIONS
Twig is intended as a research tool. Its current repertoire of

character behaviors still falls well short of what real actors can
do.2 However, it demonstrates that its approach to simulation
and control is effective for the class of applications for which
it’s designed. Further behaviors can be easily added.
 On the other hand, Twig is designed for versatility and
“believability” [39] rather than physical realism.3 While it
generates surprisingly compelling character motion,
modifying it for true physical realism would require major
changes. A more accurate physics engine such as Havok [40]
or ODE [41], and a more biologically-correct gait simulation
[13, 42] may be more appropriate for works and genres
requiring greater realism.

Fig. 1. Twig software stack

V. GEOMETRIC AND KINEMATIC MODELING
Twig objects are represented internally as a set of point-

particles called nodes, together with a set of collision volumes
attached to the nodes. Collision volumes may be capsules
(rounded cylinders), spheres, or boxes. Nodes are the only
containers of kinematic and dynamic state in the system, so
positions and orientations of objects and their collision
volumes are determined entirely by the positions of their

2 As of this writing, the repertoire is limited to navigation

(walking/running), sitting/standing, gesturing, reaching for, holding and
dropping objects, writing with/on objects, fighting and hugging, and
withdrawal from pain

3 I use the term “believable” in the technical sense used by the animation
and believable agents communities. A character is believable if it appears
sufficiently life-like to an audience that they are willing to suspend disbelief
and relate to it as a living creature. Most cartoon characters are designed
more for believability than literal physical realism.

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

3

associated nodes. Meshes for rendering are stored separately,
with mesh transforms being computed from node positions at
render time.

Most Twig objects are composed of a set of nodes
connected by rigid rods called links (see Fig. 3. Kinematic
model of a character in Twig. Circles represent point particles
(nodes) that form the joints and endpoints of the limbs and
trunk. Lines represent rigid distance constraints (links)
between nodes.). Links function both as collision volumes
and as kinematic constraints that force the nodes they connect
to be a specific distance from one another. Links can be
joined in kinematic chains by sharing nodes. The shared node
then acts as a spherical joint (i.e. it can bend in any direction).
 In the schoolyard scene shown in Fig. 2. Playground scene
produced with Twig, the characters are modeled as 13 links (2
each for the spine and each arm and leg, and one each for the
head, shoulders, and pelvis), connecting 16 nodes. The ball is
represented as a single node. The merry-go-round, which is
functional, is modeled as 18 nodes and 41 links; 25 of the
links are visible and have collision volumes (the bars), and the
rest are invisible links used only to hold the structure rigid.

Fig. 3. Kinematic model of a character in Twig. Circles represent
point particles (nodes) that form the joints and endpoints of the limbs
and trunk. Lines represent rigid distance constraints (links) between
nodes.

VI. DYNAMICS SIMULATION
Twig uses a mass-aggregate physics system [43] based on

Jakobsen’s work on the Hitman engine [34, 44], in which
objects are modeled as point masses (the nodes) connected by
massless rods (the links), and motions are computed using
Verlet integration [45]. The AGEIA PhysX engine [46] also
uses a related “position-based” approach to build a much more
general dynamics engine. However, the simpler system
discussed here is sufficient for our purposes.

In Verlet integration, the dynamic state of a particle is
represented in terms of its position in the current frame and
previous frame, rather than its position and velocity. Given a
fixed inter-frame interval, Δ , we can describe the position
of a node at time Δ in terms of its position in the previous
frames as:

∆ Δ ∆

∆
∆ ∆ Δ ∆

 ∆ Δ
2 ∆ Δ

(1)

where is the node’s instantaneous velocity and its
acceleration at time . If we want to model viscous damping,
this can be done by modifying the relative weighting of the
position in the two frames:

∆ 2 1 ∆
Δ

(2)

where is the damping factor.
 This scheme has a number of advantages. First, the
complete kinematic and dynamic state of an object is
contained in the positions of its nodes, together with their
stored positions from the previous frame (links function only
as collision volumes and distance constraints on node
position). The lack of explicit representation of momentum,

Fig. 2. Playground scene produced with Twig

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

4

angular momentum, or even orientation, significantly
simplifies the dynamics calculations. Second, it makes
constraint satisfaction much easier, since node positions can
be directly modified to enforce constraints, without having to
compute their effects on orientation, angular momentum, etc.
Finally, it allows the behavior system to control the characters
and their nodes entirely in Cartesian space, without having to
deal with joint angles or nested coordinate frames. The cost of
the design is that in the few cases where momentum,
orientation, or joint angles are needed to make control
decisions, these need to be computed from position data.

A. Friction, drag and damping
The current system does not support accurate models of

friction or drag. Instead, it provides a damping term (see
equation above), whose coefficient is large when a node is in
contact with a supporting surface, and small when in the air.
While this is technically inaccurate (damping is linear in
velocity, whereas drag is quadratic and friction includes a step
function), the inaccuracies generally aren’t apparent to a
viewer.
 Nodes can be damped relative to the environment frame
(modeling air friction) and/or relative to another node in the
object (a crude model of the biomechanical damping of
muscles and tendons). Nodes can also be locked in place to
model large static friction forces.

B. Kinematic constraints
Kinematic constraints (joint limits, rigid distance constraints,

etc.) are implemented by projection, i.e. by moving a node that
violates a constraint to a nearby position that does not violate
it. To locally enforce the distance constraints imposed by a
link, we measure the actual distance between
its endpoint nodes and compare it to the desired distance, . If
the nodes are not the desired distance apart, we move each
node half the difference between the desired and actual
distances, weighted by their respective masses, and :

2

2

(3)

where is the offset between the nodes.
 Constraint satisfaction is also used to enforce joint limits.
For example, the knee is a revolute joint, meaning it’s
constrained to rotate about a specific axis. However, the
underlying simulation simulates spherical joints, meaning they
can rotate about any axis. To prevent the knee from bending
sideways, it’s necessary to bring it into alignment by
constraining it to lie in the plane formed by the hip, foot, and
forward direction of the pelvis. The normal to this plane is
given by:

 (4)

where and are the positions of the root and end nodes (hip
and foot) of the leg, respectively, and is the forward

direction of the pelvis. If the knee is in alignment, then the
positions of the foot and knee will project equally along this
axis, so , where is the position of the leg joint
(knee). The error in the knee’s position is therefore:

Δ (5)

The constraint is then enforced by shifting the foot position by
Δ /2 and the knee position by Δ /2.

On each update cycle, each object tests its nodes against its
constraints and adjusts node positions as necessary to locally
satisfy the constraint being evaluated. This has the potential to
violate constraints, but such violations are generally not
detectable by the user, especially if the object is moving.
Moreover, if the object stops moving, it quickly relaxes into a
configuration that satisfies the constraints.
 Projection is computationally efficient, but not especially
accurate since it does not necessarily conserve energy or in all
cases, even momentum. However, in practice, it generates
motions that look real enough. Again, the goal is
believability, not numerical accuracy.

C. Constraint satisfaction in kinematic chains

Fig. 4. A character drags off stage another character, who in turn
drags another object (a clipboard), while a third character approaches.

As mentioned above, constraint satisfaction provides a
mechanism for handling kinematic chains and provides a kind
of simplified inverse kinematics, allowing control systems to
apply forces to endpoints of kinematic chains, or even directly
position them. If a character’s hand is moved to a new
location, its link to the elbow will drag the elbow node along
with it, and that may, in turn, drag the shoulder, or even the
whole rest of the character.

Grasping is implemented by creating temporary zero-length
links between the hand node of a character and one of the
nodes of the object being grasped. If the character moves their
arm, it will then drag the object along with it. However, it is
often easier to implement object manipulation by allowing the
object to drag the character rather than the other way around
(see section VIII, below).

Fig. 4 shows an example in which one character drags
another entire character who drags another object (a
clipboard), in turn. Here, the hand of the character on the right
(the dragger) is linked to the shoulder node of the middle
character, whose hand is linked to one of the corners of the
clipboard. The flow of forces in this example starts with the
shoulders of the character on the right, which are trying to
center themselves above the character’s pelvis. This drags the

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

5

arm, which drags the other character’s shoulders, and along
with them, the arm and clipboard.

D. Collision handling
Collisions are handled as a special case of constraint

satisfaction. After each dynamic object is updated, its
collision volumes are tested against the collision volumes of
other objects and their nodes moved so as to separate their
collision volumes.
 We will discuss the link/link collision case, since most
collision volumes in Twig are attached to links. Other cases
are handled analogously. Let the endpoints of one link be
nodes and , and the endpoints of the other be nodes and ,
with positions , , etc. Since links are modeled as
cylindrical collision volumes, this can be reduced to testing
the distance between the line segments and . If the
distance between them is less than the sum of the radii of the
two cylinders, then they interpenetrate and need to be
separated. To be physically accurate, we should determine the
precise points of contact on the two cylinders, compute the
relevant torques and moments of inertia, and update the
positions of the endpoints accordingly. However, in practice,
the links are almost always chained with other links that
constrain their allowable motion. Since these inter-link
constraints dominate the dynamics of the collision, we can
obtain realistic looking collisions by translating the colliding
cylinders apart, ignoring torques, and allowing the inter-link
constraints to produce a realistic-looking motion.

 In particular, let

 be the contact

normal along which the cylinders intersect. The distance
between the spines of the cylinders is then · .
If the radii of the two cylinders are and , then the
penetration depth of the cylinders is . We
then translate both nodes and by (⁄ 2 (half the
penetration), and we translate both nodes and by
– 2 .

Fig. 5. Object collision in an homage to Cleese et al. [47].

 A collision impulse could also be added to the links to
simulate elastic collision. However, since humans don’t
bounce well, this would be counter-productive for links
representing body parts.
 Overall collision detection works in two phases. First,
broad-phase detection is performed by projecting each object’s
position into the ground plane, and testing the distance of each
object’s projected position against a collision radius (this is
equivalent to approximating objects as axis-aligned cylinders).
If two objects are close enough, then their respective collision
volumes are enumerated and testing against one another
exhaustively. When collision volumes intersect, their contact
points, contact normals, and penetration depths are computed
and their corresponding nodes are translated apart, weighted
by their respective masses.

Fig. 5 shows an example of a collision between a character
and a non-cylindrical object (a 16 ton weight). The object’s
collision volume is modeled as an oriented bounding box.Fig.
5

E. Tactile sensing
When a body part detects a collision, it stores a pointer to the

object that hit it. This allows characters to detect when they
are touching objects, and approximately where the contact is
occurring. The system also computes the kinetic energy of the
impact. If the kinetic energy is over threshold, the system
registers it as pain. Characters also maintain an overall pain
level, which decays exponentially over time.

VII. LOW-LEVEL CHARACTER CONTROL
All character behavior is ultimately implemented by moving

nodes around. One of the advantages of the style of kinematic
and dynamic modeling in Twig is that this control can be done
directly in Cartesian coordinates, without having to deal with
joint angles or perform explicit inverse kinematics.

A. Node control
Nodes are controlled principally by setting their velocity or

acceleration. However, their positions can also be set directly,
or they can be directed to perform a linear motion to a set-
point. In the latter case, the node automatically moves along a
straight line to arrive at the target in a specified amount of
time without further need for control. This mode is used
principally for limb motions. Nodes can also be locked in
position or told to lock themselves when they come into
contact with the ground plane.

B. Posture Control
Posture is controlled by applying forces directly to the nodes

of the torso and pelvis, rather than by balancing the body as an
inverted pendulum using simulated muscular forces. This
makes control simple and stable at the cost of sometimes
violating physical realism (for example, the current version of
the system applies postural forces even when the legs aren’t
touching the ground). Again, this is adequate for the tasks
we’re considering, but a more complicated scheme would be
necessary for applications in which it was necessary to
accurately model balance, tripping, falling, etc.
 Posture control consists of a set of simple control loops:

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

6

• Standing is implemented by two control loops
o A force is applied along the (up) axis to the

center of the pelvis to hold it at standing height.
o Forces are applied along the and axes to

horizontally align the center node of the pelvis
with the midpoint of the feet.

• Sitting up works essentially like standing, except that
the center node of the shoulders is controlled so as to
place the character’s center of mass directly over the
midpoint of the two feet. The shoulders are also tilted
slightly in the direction of motion when the character is
running.

• Orientations are controlled by twisting the pelvis and
shoulders. Since the dynamics engine doesn’t
explicitly support torques, the torque is produced by
applying opposite forces to opposite sides of the
character.

o The pelvis rotates to align with the direction of
walking

o The shoulders rotate to align with the gaze
direction, subject to the constraint that they not
rotate more than 90 degrees relative to the pelvis.

 Note that these control loops are simple proportional
controllers rather than proportional-derivative controllers
(i.e. they have no damping term). They rely on the damping
of the nodes themselves to prevent oscillation.

C. Limb control
The head controller points the “front” of the face toward the

current gaze target, or the direction of motion, if there is no
gaze target. In the current version of the system, this is an
instantaneous motion. This will undoubtedly need to be
changed to a smooth motion in the future, but since the current
characters have no faces, this kind of exaggerated motion is
actually useful for cuing the viewer that the character’s gaze is
shifting.
 The arm controller currently supports five actions: swing
(used when walking), reach, grapple, hug, and grab. Swinging
is implemented by applying impulses to an arm when the
opposite foot begins a step. At the level of the limb controller,
reaching, grappling and hugging are all implemented by
moving the hands directly in front of the shoulders at near-
maximum extension. The rest of the reach, hug, and grapple
actions are then controlled by higher-level controllers. Again,
grasping is implemented by creating an invisible, zero-length
link between the character’s hand and one of the nodes of the
object to be grasped.

Hugging. Hugging is implemented by reaching and
approaching the target, then joining the hands when the target
object makes contact with the character’s torso.

“Grappling”. Grappling is a kluge that is implemented by
waiting until the character closes to within less than an arm
length of the target and then engaging reaching, causing the
arms to bash into the other character. This looks like shoving,
punching, or wrestling to the viewer. It also tends to cause
pain in the other character, triggering its pain withdrawal
reflex, thus making it step back. While insufficient for a
fighting game, it’s sufficiently realistic for depictions of
children fighting.

Legs are controlled by the gait controller (see below).
The system also supports simulated respiration by moving

the shoulders up and down in a sinusoid, similar to [36].
Respiration increases with increased walking speed. In the
current system, respiration is largely invisible to the viewer
because the shoulders are modeled as a single cylinder,
however they could be split to make it more apparent.

Fig. 6. A child character hugs its parent.

D. Gait Control
The gait generator drives the character to walk with a

direction and speed chosen by one of the higher-level
behaviors. Gait generation is largely kinematic and is closest
to the work of Perlin [35]. The gait generator sets the ground-
plane velocity of the pelvis to the walk vector, then monitors
the extension of the legs. When a leg is sufficiently far behind
the pelvis, the gait generator moves the foot node on a ballistic
trajectory to a point in front of the pelvis, but in the direction
of the walk vector. The constraint handling system moves the
knee appropriately and insures that it doesn’t bend backward
or sideways.

E. Gesturing
Twig also provides support for playing back fixed gestures.

Gestures are defined by specifying hand positions in a series
of key frames stored in an XML file in the XNA Content
Pipeline. In order to allow gestures to be easily ported from
one body to another, hand positions are represented in a torso-
centered coordinate system that can be normalized to the size
of the character’s arm, torso, or head. For example, to
represent holding the arm fully extended from the body, one
would use a coordinate system normalized to arm length,
while to represent holding an arm aligned with the middle of
the body, one would use coordinates normalized to torso size.

Since this approach only works for gestures that either don’t
reference other objects, or that reference one’s own body, it
will be necessary in future to allow key frames to be specified
in the coordinate system of a target object. For example to
represent patting another character on the back, one would
want to represent the motion in a coordinate system centered
on the other character’s torso. However, this has not yet been
implemented.

VIII. OBJECT MANIPULATION
Twig currently supports two modes of holding an object.

Hold holds the object loosely at the character’s side. Hold is

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

7

implemented simply by creating a link between the character’s
hand and a specified node of the object.

In contrast to plain Holding, HoldForUse places the object
in an object-specific pose appropriate for manipulation.
HoldForUse is implemented by having the object compute its
own desired pose and hover there, dragging the character’s
arm along with it. This simplifies design and makes control
more stable.

A. Task-specific coordinate systems
Manipulable objects are allowed to specify task-specific

coordinate systems called charts. A chart defines an object
centered-coordinate system intended for use in a given type of
manipulation. Charts are generally tied to the surface of the
object, so that within the chart’s coordinate system a point
whose Y coordinate is 0 will lie on the object’s surface, and
whose Y coordinate is greater than zero will lie above the
surface. Charts also specify the surface normal at a given
point. Each object provides an atlas, which is a dictionary of
named charts.

Fig. 7. Two characters hold papers, while one checks off items using

a pen.

For example, when the character on the left in Fig. 7 uses a
pen to write on the clipboard, the pen retrieves the chart
named “front” from the clipboard’s atlas and positions its
endpoint at a specified location on the clipboard’s surface.
When the pen is not writing it lifts itself above the clipboard
by moving a specified distance along the local Y axis in the
front chart. Again, as the pen moves, it drags the character’s
hand with it.

The technique of allowing the manipulandum to drag the
character’s arm, rather than embedded a control loop in the
arm works well in general. However a problem occurs if the
character’s facing direction is left unconstrained. The problem
occurs because on each frame the object computes its target
pose in terms of the character’s current pose and facing
direction. However, in dragging the character’s arm, the
object may rotate the character’s shoulders slightly, resulting
in a new facing direction, and hence a new target pose for the
object in the next frame. This can cause the character to
slowly spin in place if the character’s orientation system isn’t
given a specific object or direction to lock onto.

IX. HIGH-LEVEL CONTROL
Characters can either be controlled through a separate

sequencer (e.g. through scripting or a remote procedure-call
interface), or they can run autonomously. Although this is the
least well-developed part of the system, the current high-level
behavior system consists of two main components. First, an
attention system scans and appraises the objects in view to
determine a focus object. Objects are reappraised on each
clock tick, but focus switching is inhibited for a refractory
period (1s) after each switch to prevent thrashing. The
attention system runs autonomously, and usually has control
of the gaze system. In addition to the attention system, a set of
hierarchically structured high-level behaviors compete to send
commands to the motor system. Each behavior computes an
activation level (a rough measure of how useful it would be to
fire the behavior at the moment) as well as a set of motor
commands to send to the level below. Siblings in the
hierarchy compete with one another; the behavior with the
highest activation level is chosen to send its commands to the
lower levels. Again, switching is inhibited for a short
refractory period (0.2-0.75 seconds) each time a new behavior
is selected to prevent thrashing. This forms a hierarchical
behavior selection system similar to Blumberg’s work on
ethologically inspired control [32].

Fig. 8. Behavior network for the attachment simulation.

Fig. 8 shows the high-level behavior network for the safe

home base simulation described below. The motor system is
controlled by three main behaviors. Freeze is the default
behavior, which does nothing. Pain-withdrawal triggers
automatically when the character experiences pain and moves
the character away from whatever object caused the pain.
Approach is the main motor behavior. It steers the character
toward a designated object, while avoiding obstacles (see
section IX.A, below).

While sufficient for the simulation for which it was
originally designed, the current high-level control system is
quite limited. In particular, the lower-level motor system
supports a number of behaviors, such as sitting and object
manipulation, that aren’t used by the higher-level system. At
present, these can only be used by the scripting and RPC
interfaces.

motor
system

pain
withdrawal

approach freeze

fight play attach

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

8

A. Object approach
The approach behavior is worth some discussion on its own.

It takes as input a target object, a distance from the object to
stop at, and a direction from which to approach it.
Approach also takes as input settings for the hug, reach, and
grapple controls, which it forwards to the arm control
behaviors. It generates a walk vector, (a velocity vector for
the gait controller), based on an artificial potential-
field/motor-schema [31] which is the sum of an attraction
component, , in the direction of the target object, and a
repulsion component, , pushing away from any intervening
obstacles:

, where:
 (6)

 max ,

where here denotes the position of object , and are
constants tuned to taste, and is a unit vector pointing
upward. The cross product term produces a curl component to
the field that pushes the character around obstacles, making it
less likely that they will encounter local minima in the field.
To avoid asking the walk system to move too fast, the
component is also saturated to prevent its magnitude from
going over a threshold. To reduce computation time, objects
over a threshold distance are ignored when computing .
 The approach behavior works well for relatively uncluttered
environments. For maze-like environments, a more
complicated path-planning system would be necessary.
However, such a system could be easily incorporated.

X. RENDERING
Currently, most objects in Twig are either built out of

spheres and cylinders, or are modeled using an external 3D
modeling tool such as Google SketchUp. The former are
represented as a set of cylindrical and spherical collision
volumes, each with its own separate mesh for rendering. The
latter are generally approximated as a single OBB collision
volume, mostly out of laziness.

Thus, objects typically have a separate rendering mesh for
each of their collision volumes. The renderer computes a
transformation matrix for each of these meshes from the
positions of the nodes defining its collision volume and draws
it. Thus, characters are currently drawn as collections of
cylinders, which fits with the overall cartoon aesthetic of the
system. However, it would be straightforward to compute
bone transformations for a rigged mesh from the character’s
node positions, if greater visual realism was desired.

Rendering is currently the bottleneck of the system in spite
the relatively low polygon count of the meshes. This is
because each cylinder is drawn as a separate batch using the
default XNA shader. The system could be sped up
considerably by using a different shader that supported
instanced meshes.

XI. AUTHORING TOOLS
Twig supports the XNA Content Pipeline, a set of

extensions to the build system of Microsoft Visual Studio
designed to help manage media assets and convert them from
external formats to internal binary formats.

A. Prop authoring
The content pipeline is most commonly used for importing

models for props. Depending on the model, this may require
the user to make a new C# class that understands how to
render the model, what its collision volumes should be, and
how to implement any special behavior of the object. Many
props are passive, however, and can be approximated as boxes
for purposes of collision detection. In these cases, the user can
use the BoxModel class and specify the name of a mesh from
the content pipeline. The BoxModel class will automatically
load the mesh and compute its bounding box. The object can
then be placed in the world.

B. Gestures
Users can author gestures through the content pipeline by

adding XML files containing the necessary key frames for the
gestures. The gestures can then be played back on demand by
specifying the name of the gesture file and the hand(s) to play
it through.

C. Scripting
Finally, the user can script the behavior of characters using a

simple scripting language of the form:

name: method args …

where name is the name of an object in the Twig world and
method and args define an arbitrary C# method to call on the
object. The script interpreter uses the .NET reflection
interface to invoke the method.
 The script interpreter normally ignores the return value of
the method. However, in cases where one wants to script an
action that takes time to complete, the method can return an
Action object, which the script interpreter will poll on each
clock tick until the Action reports the operation is complete.
Parallel execution of durative actions can be forced by adding
an “&” to the end of the command, which causes the script
interpreter to continue to the next command without waiting
for the Action object to report completion.
 Scripts can be managed as assets in the content pipeline or
loaded from text files at runtime.

D. RPC interface
Most research users will want to drive Twig from an

existing system, most likely not written under .NET. For such
users, the script interpreter can be run over a TCP socket,
providing a remote procedure-call interface that should be
comparatively simple to implement on the client side. The
user can also TELNET to the socket and drive the characters
manually by typing script commands on the keyboard,
although this is useful mainly for testing purposes.

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

9

XII. EXAMPLE APPLICATIONS
To date, Twig has been used for two main applications. It

was originally developed as a back-end for a behavior
simulation system, but then developed a life of its own. Since
then, it has also been used in scripted mode to do a series of
short episodic pieces, a sort of moving-image version of a web
comic.

Fig. 1. Twig software stack shows a scene from the original
system, a crude simulation of the “safe home base”
phenomenon from Attachment Theory [48]. Here, a child
makes excursions from its parent to explore the environment,
and in particular, to play with a ball, but periodically returns to
the caregiver to be soothed.
 The demonstration involves three approach behaviors (see
Fig. 8. Behavior network for the attachment simulation.Fig.
8): playing with the ball, fighting, and running to hug the
parent (attachment). The characters appraise each object in
view or in short-term memory for its salience (interest level),
valence (good/bad), and monitoring priority (how much to pay
attention to it). The maximal salience object becomes the
focus of attention for that update cycle. The different
approach behaviors react to the focus of attention and change
their activation levels depending on the type of object and its
appraisal.
 In parallel, the gaze control system shifts visual attention
between the current focus of attention, the target of the
approach system (if different), and other objects that have high
monitoring priority (the parent and any potential threats).
 The result is that the children run after the ball because it’s
highly valenced. As the small child gets farther from the
parent, however, it becomes anxious and the monitoring
priority of the parent increases, causing the child to
periodically stop and look back to the parent. Eventually, the
child’s anxiety becomes sufficient for it to abandon the ball
and return to hug the parent, which reduces the child’s
anxiety. Eventually, the child’s attention returns to the ball,
the child returns to play, and the cycle repeats.

XIII. IMPLEMENTATION AND PERFORMANCE
Twig is written in C# and runs under XNA Game Studio 3.0

[37]. It consists of three separate libraries. The main Twig
library implements the basic physics, animation, and behavior
systems, as well as the script interpreter and built-in object
types such as characters and the BoxModel. The TwigServer
library is a separate library that can be linked in to support
control over a TCP connection. The final library,
TwigContentProcessors, provides Twig-specific extensions for
the XNA Content Pipeline.

The physics system runs at a fixed update rate of 60Hz,
since Verlet integration is unstable with variable step times.
XNA allows the renderer to skip frames if it can’t sustain
60fps, but this isn’t an issue in practice unless there are a large
number of characters on screen at once.

A debug build of the scene in figure 1 takes approximately
5ms per frame on a single core of a 1.6MHz notebook
machine. Physics and behavior generally take 1-1.5ms when
the characters are interacting and less than 0.5ms when the
characters are widely spaced; this is because broad-phase

collision detection is able to prune all intersection tests.
Actual rendering is slower, generally around 3.8ms; however,
there is considerable room for optimization here (see section
X).

A. Failure modes
The simplified physics and control in Twig do cause

occasional problems. For example, the walking system
applies an external force directly to a character’s torso, which
then pulls the (largely passive) legs along, rather than by
simulating muscular forces within the legs and torso. This can
potentially allow a character to violate conservation by
pushing the merry-go-round while standing on it, although this
has yet to happen in practice.
 The system’s kinematic simplifications are also sometimes
noticeable. Since characters are modeled internally in terms
of node positions rather than joint angles, kinematic
constraints must be added to simulate joint limits. While this
is straightforward to do for the knees, it’s harder to do for the
elbows because of the wider range of motion at the shoulder
than the hip. In the current system, the elbows sometimes
seem to wiggle unrealistically because they fail to capture the
true dynamics of a human arm, even though each individual
arm position is kinematically possible for a human.
 A final class of issues stems from conflicts within the
behavior system itself. For example, if the child runs too fast
when trying to hug the parent, it can impact the parent with
enough force to cause pain. That triggers a pain withdrawal
reflex during the docking phase of hugging. Although this
behavior is realistic in the sense that real human children do it
from time to time, it has the potential to turn a sentimental
scene into slapstick.

XIV. FUTURE WORK
Twig provides a useful back-end simulation and animation

system for interactive narrative research. That said, it has a
number of limitations. To make the system more useful, the
RPC system will need to be extended. It provides good
control of the simulated world, but currently has only minimal
facilities for reporting back to client about the state of the
world.

Another major deficiency is the lack of faces for characters.
Although this is less bothersome than one might expect, it
nevertheless is a significant limitation.

The current system also has little or no facilities for lighting
and camera control. Incorporating intelligent camera [49] and
lighting [50] control would be very useful.

Finally, the existing high-level AI system is quite limited.
Extending it to handle more actions and perform better means-
ends analysis, will be important. Real path and reach-planning
would also be helpful for a number of applications.

XV. CONCLUSION
Twig is a simple, extensible, AI-friendly, procedural

animation system. Although still under development, it
provides a range of capabilities, including goal-directed
character locomotion, object manipulation, and complicated
physical interactions between characters, such as hugging and
dragging. Because Twig is intended principally for interactive

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

10

narrative applications, its design emphasizes believability in
the technical sense of making characters seem alive to an
audience, rather than realism in the sense of precise
duplication of human motion.

While dynamic control is generally more difficult than
kinematic control, in Twig the use of a minimalist physics
simulation actually simplifies the problem of authoring
behaviors. The constraint satisfaction system in the simulator
allows programmers to directly specify the constraints and
forces on nodes in Cartesian coordinates, without having to
program in terms of joint angles or use an explicit inverse
kinematics system. In many ways, it allows the programmer
to think kinematically when writing individual controllers,
while allowing those controllers to interact through the
constraint and dynamics system. This makes it relatively easy
to combine the actions of different controllers without
worrying, for example, that the torques introduced by the
swinging of the arm when manipulating an object will drive
the posture system into oscillation.

The cost of this design is physical realism. While it is
convenient to implement walking by allowing the pelvis to
drag the legs, or to implement object manipulation by
levitating the object and allowing it to drag the arm, this does
not produce the same forces and viscous damping that a true
biomechanical simulation would produce. Thus even if the
character’s hand has the same trajectory as a human’s would
(which it may well not), the motion of the elbow and the
concomitant postural changes of the shoulder, spine, and legs,
will not identical to those of a human. They do, however,
generally look lifelike. For our applications, this is quite
sufficient. Accurate biomechanical simulation is left as an
exercise for the reader.

ACKNOWLEDGEMENTS
I would like to thank Michael Mateas, Andrew Stern, Rob

Zubek, Andrew Ortony, Magy Seif El-Nasr, and Chuck Rich,
for suggestions and encouragement. I would also like to thank
Bill Manegold for being a helpful and forgiving alpha tester.

REFERENCES

[1] H. J. Shin, J. Lee, S. Y. Shin et al., “Computer

Puppetry: An Importance-Based Approach,” ACM
Transactions on Graphics, vol. 20, no. 2, pp. 67-94,
April 2001, 2001.

[2] C. Rose, B. Bodenheimer, and M. F. Cohen, “Verbs
and Adverbs: Multidimensional Motion Interpolation
Using Radial Basis Functions,” IEEE Computer
Graphics and Applications, vol. 18, pp. 32--40, 1998.

[3] A. Bruderlin, and L. Williams, “Motion signal
processing,” Computer Graphics (Proceedings of
SIGGRAPH 95), pp. 97-104, August 1995, 1995.

[4] A. Witkin, and Z. Popović, “Motion warping,”
Computer Graphics (Proceedings of SIGGRAPH 95),
vol. 17, pp. 105–108, August 1995.

[5] C. W. Reynolds, “Flocks, Herds, and Schools: A
Distributed Behavioral Model,” Computer Graphics

(Proceedings of SIGGRAPH 87), vol. 21, no. 4, pp.
25-34, July 1987, 1987.

[6] K. Sims, “Evolving virtual creatures,” Computer
Graphics (Proceedings of SIGGRAPH 94), pp. 15–
22, 1994.

[7] X. Tu, and D. Terzopoulos, “Artificial Fishes:
Physics, Locomotion, Perception, Behavior,”
Computer Graphics (Proceedings of SIGGRAPH 94),
pp. 43-50, July 1994.

[8] F. Multon, L. France, Marie-Paule et al., “Computer
animation of human walking: a survey,” The Journal
of Visualization and Computer Animation, vol. 10,
no. 1, pp. 39-54, 1999.

[9] D. Zeltzer, “Motor Control Techniques for Figure
Animation,” IEEE Computer Graphics and
Applications, vol. 2, no. 9, pp. 53-59, 1982.

[10] R. Boulic, and R. Mas, "Hierarchical kinematic
behaviors for complex articulated figures,"
Interactive computer animation, pp. 40-70: Prentice-
Hall, Inc., 1996.

[11] M. H. Raibert, and J. K. Hodgins, “Animation of
Dynamic Legged Locomotion,” Computer Graphics
(Proceedings of SIGGRAPH 91), vol. 25, no. 4, pp.
349-358, July 1991, 1991.

[12] M. McKenna, and D. Zeltzer, “Dynamic Simulation
of Autonomous Legged Locomotion,” Computer
Graphics (Proceedings of SIGGRAPH 90), vol. 24,
no. 4, pp. 29-38, August 1990, 1990.

[13] K. Hase, K. Miyashita, S. Ok et al., “Human gait
simulation with a neuromusculoskeletal model and
evolutionary computation,” The Journal of
Visualization and Computer Animation, vol. 14, no.
2, pp. 73-92, May 2003, 2003.

[14] A. Bruderlin, and T. W. Calvert, “Goal-Directed,
Dynamic Animation of Human Walking,” Computer
Graphics, vol. 23, no. 3, pp. 233-242, 1989.

[15] F. Devillers, S. Donikian, F. Lamarche et al., “A
programming environment for behavioural
animation,” The Journal of Visualization and
Computer Animation, vol. 13, pp. 263-274, 2002.

[16] B. M. Blumberg, and T. A. Galyean, “Multi-level
direction of autonomous creatures for real-time
virtual environments,” Computer Graphics
(proceedings of SIGGRAPH 95), pp. 47–54, August
1995.

[17] S. Regelous, "Massive," Massive Software, Inc.,
2001.

[18] L. A. Zadeh, G. J. Klir, and B. Yuan, Fuzzy Sets,
Fuzzy Logic, Fuzzy Systems: World Scientific Press,
1996.

[19] K. Perlin, and A. Goldberg, “Improv: A System for
Scripting Interactive Actors in Virtual Worlds,”
Computer Graphics, vol. 30, pp. 205-216, 1996.

[20] N. I. Badler, C. B. Phillips, and B. L. Webber,
Simulating Humans: Computer Graphics Animation
and Control: Oxford University Press, 1993.

[21] N. I. Badler, M. S. Palmer, and R. Bindiganavale,
“Animation control for real-time virtual humans,”
Commun. ACM, vol. 42, no. 8, pp. 64-73, 1999.

Not for Citation. Submitted to IEEE Transactions on Computational Intelligence and AI in Games; Comments welcome

11

[22] C. B. Phillips, J. Zhao, and N. I. Badler, “Interactive
real-time articulated figure manipulation using
multiple kinematic constraints,” in Proceedings of the
1990 symposium on Interactive 3D graphics,
Snowbird, Utah, United States, 1990.

[23] T. Marcus, M. Stacy, N. M. Andrew et al.,
“SmartBody: behavior realization for embodied
conversational agents,” in Proceedings of the 7th
international joint conference on Autonomous agents
and multiagent systems - Volume 1, Estoril, Portugal,
2008.

[24] Natural Motion Inc., "Euphoria:core motion synthesis
library," Natural Motion, Inc., 2006.

[25] Rockstar North, and Rockstar Toronto, "Grand Theft
Auto IV," Rockstar Games, 2008.

[26] LucasArts, "Star Wars: The Force Unleashed,"
LucasArts, 2008.

[27] Natural Motion Inc., Endorphin 2.6 User Guide,
Natural Motion, Inc., 2006.

[28] Valve Corporation, "Half-Life 2," Vivendi Universal
Games, 2004.

[29] Epic Games, "Unreal Tournament 3," Midway
Games, 2007.

[30] M. Mateas, and A. Stern, "Façade," 2005.
[31] R. Arkin, Behavior-Based Robotics, Cambridge: MIT

Press, 1998.
[32] B. Blumberg, “Old Tricks, New Dogs: Ethology and

Interactive Creatures,” Media Lab, Massachusetts
Institute of Technology, Cambridge, 1996.

[33] M. M. Williamson, “Oscillators and Crank Turning:
Exploiting Natural Dynamics with a Humanoid
Robot Arm,” Philosophical Transactions of the Royal
Society: Mathematical, Physical and Engineering
Sciences, vol. 361, no. 1811, pp. 2207-2223, 2003.

[34] T. Jakobsen, “Advanced Character Physics,” in Game
Developer's Conference, San Jose, 2001.

[35] K. Perlin, "Unpublished work on bipedal walking,"
2003.

[36] K. Perlin, “Real time responsive animation with
personality,” IEEE Transactions on Visualization and
Computer Graphics, vol. 1, no. 1, pp. 5-15, 1995.

[37] Microsoft, "XNA Game Studio 3.0," Microsoft
Corporation, 2008.

[38] Free Software Foundation. "Lesser Gnu Public
License, v.3," http://www.gnu.org/licenses/.

[39] J. Bates, “The Role of Emotion in Believable
Agents,” Communications of the ACM, vol. 37, no. 7,
pp. 122-125, 1994.

[40] Havok, "The Havok 5.5 Physics Engine," Havok Inc.,
2008.

[41] R. Smith, Open Dynamics Engine v.0.5 User Guide,
2006.

[42] S. Kuriyama, Y. Kurihara, Y. Irino et al.,
“Physiological gait controls with a neural pattern
generator,” The Journal of Visualization and
Computer Animation, vol. 13, no. 2, pp. 107-119,
2002.

[43] I. Millington, Game physics engine development,
Amsterdam ; Boston: Morgan Kaufmann Publishers,
2007.

[44] IO Interactive, "Hitman: Codename 47," Eidos
Interactive, 2000.

[45] L. Verlet, “Computer 'Experiments' on Classical
Fluids. I. Thermodynamical Properties of Lennard-
Jones Molecules,” Physical Review, vol. 159, no. 1,
pp. 98-103, July 1967, 1967.

[46] M. Müller, B. Heidelberger, M. Hennix et al.,
“Position based dynamics,” J. Vis. Comun. Image
Represent., vol. 18, no. 2, pp. 109-118, 2007.

[47] J. Cleese, G. Chapman, E. Idle et al., "Self-defense
Against Fresh Fruit," Monty Python's Flying Circus,
series 1, episode 4, Owl Stretching Time, British
Broadcasting Corporation, 1969.

[48] J. Bowlby, Attachment and Loss, New York,: Basic
Books, 1969.

[49] A. Jhala, and R. M. Young, “A discourse planning
approach to cinematic camera control for narratives
in virtual environments,” in 20th National
Conference on Artificial Intelligence (AAAI-05),
Pittsburgh, PA, 2005.

[50] M. S. El-Nasr, and I. Horswill, “Automating lighting
design for interactive entertainment,” ACM
Computers and Entertainment, vol. 2, no. 2,
April/June, 2004.

