
AI for Dynamic Difficulty Adjustment in Games

Robin Hunicke, Vernell Chapman

Northwestern University
Computer Science Department

1890 Maple - Evanston, IL 60201
hunicke@cs.northwestern.edu, vernell@northwestern.edu

Abstract
Video Games are boring when they are too easy and
frustrating when they are too hard. While most single-
player games allow players to adjust basic difficulty (easy,
medium, hard, insane), their overall level of challenge is
often static in the face of individual player input. This lack
of flexibility can lead to mismatches between player ability
and overall game difficulty.

In this paper, we explore the computational and design
requirements for a dynamic difficulty adjustment system.
We present a probabilistic method (drawn predominantly
from Inventory Theory) for representing and reasoning
about uncertainty in games. We describe the
implementation of these techniques, and discuss how the
resulting system can be applied to create flexible interactive
experiences that adjust on the fly.

Introduction
Video games are designed to generate engaging
experiences: suspenseful horrors, whimsical amusements,
fantastic adventures. But unlike films, books, or televised
media � which often have similar experiential goals �
video games are interactive. Players create meaning by
interacting with the game�s internal systems.

One such system is inventory � the stock of items that a
player collects and carries throughout the game world.1
The relative abundance or scarcity of inventory items has a
direct impact on the player�s experience.2 As such, games
are explicitly designed to manipulate the exchange of
resources between world and player. [Simpson, 2001]

This network of producer-consumer relationships can be
viewed as an economy � or more broadly, as a dynamic
system [Castronova, 2000, Luenberger, 79].

1 Inventory items for �first-person shooters� include health,
weapons, ammunition and power-ups like shielding or temporary
invincibility.
2 A surplus of ammunition affords experimentation and �shoot
first� tactics, while limited access to recovery items (like health
packs) will promote a more cautious approach to threatening
situations.

Game developers iteratively refine these systems based on
play testing feedback � tweaking behaviors and settings
until the game is balanced. While balancing, they often
analyze systems intuitively by tracking specific identifiable
patterns or types of dynamic activity. It is a difficult and
time consuming process [Rollings and Adams, 2003].

While game balancing and tuning can�t be automated,
directed mathematical analysis can reveal deeper structures
and relationships within a game system. With the right
tools, researchers and developers can calculate
relationships in less time, with greater accuracy.

In this paper, we describe a first step towards such tools.
Hamlet is a Dynamic Difficulty Adjustment (DDA) system
built using Valve�s Half Life game engine. Using
techniques drawn from Inventory Theory and Operations
Research, Hamlet analyzes and adjust the supply and
demand of game inventory in order to control overall game
difficulty.

Prior Work

Commercial DDA
While it has potential benefits, DDA does not come
cheaply. Ultimately, DDA systems take control away from
the designer and put it in the hands of code, which has
obvious drawbacks.

Few commercial developers have implemented adjustment
systems for their games, and even fewer have shipped
them. For a discussion of commercial DDA system designs
and failures, see [Arey, Wells, 2001].

To the extent that commercial systems have been formally
proposed or published, there are two basic approaches. The
first is predominantly manual; designers annotate game
tasks and obstacles with information about their difficulty
prior to evaluation [Pfeiffer, 2003]. The second champions
a combination of data mining and off-line analysis
[Kennerly, 2003].

We propose a probabilistic technique that dynamically
evaluates the difficulty of given obstacles based on user
performance, as the game is running.

Genres
Difficulty adjustment can be applied in almost any game
genre, but is often discussed within the context of
Massively Multiplayer Online Games. Due to the size of
these games, and their largely stats-based nature, even
slight imbalances can have an extremely negative impact
on the overall player experience � but tweaking the live
game is also disruptive.

As a result, MMOG developers want to know which
elements should be tuned, and how that can be achieved
successfully in a live game. Specifically � when is it
necessary to tweak an in-game system? Which adjustments
will result in direct, predictable and desirable changes to
the system dynamics? [Carpenter, 2003]

FPS game economies are relatively simple compared to
online game economies. But the combat economics of FPS
games are often repeated in sub-economies of MMOG and
other game spaces. We investigate the FPS environment
as a first step towards understanding the dynamics of
larger, more complex game economies.

Hamlet System

Architecture
The Hamlet system is primarily a set of libraries embedded
in the Half Life game engine. This includes functions for

• Monitoring game statistics according to pre-
defined metrics.

• Defining adjustment actions and policies.
• Executing those actions and policies.
• Displaying data and system control settings.
• Generating play session traces.

As the player moves throughout the game world, Hamlet
uses statistical metrics to monitor incoming game data.
Over time, Hamlet estimates the player�s future state from
this data. When an undesirable but avoidable state is
predicted, the system intervenes and adjusts game settings
as necessary.

Basically, we are trying to predict when the player is
�flailing� � repeatedly edging towards a state where her
current means can no longer accomplish necessary and
immediate ends. When we detect flailing behavior, we
want to intervene � helping the player progress through the
game.

Flow
Game adjustment is not as simple as adding health when
the player is in trouble; it is a design problem that involves
estimating when and how to intervene. Keeping the player
challenged and interested is especially difficult in
interactive contexts. [LeBlanc et al, 2001-2004].

One common approach to player investment is the flow
model developed by M. Csikszentmihalyi. Here our goal is
to keep the player in the flow channel � away from states
where the game is far too challenging, or way too easy.

Looking at the FPS environment, we can abstract
gameplay with a relatively simple state transition diagram.
Players engage in loops of searching, retrieving, solving
and fighting. With each new level, new enemies and
obstacles are introduced. Overall, difficulty increases with
time, as does skill acquisition.

Hamlet is designed to keep the player in the flow channel
by encouraging certain states, and discouraging others.
Effectively, our goal is to keep the player in engaging
interaction loops, for the most appropriate period of time,
given their level of overall skill and game-specific
experience.

Obstacle

Enemy

Search

Object

Spawn

Win
 (or retreat)

Die

Fight

Find Find

Solve
 (or not)

Get
 (or not)

A simplified state transition diagram for the First Person
Shooter game genre.

Increasing Skill

In
cr

ea
si

ng
 c

ha
lle

ng
e

Flow state as it transitions over the course of a dynamic
experience. Challenge and pacing must ramp to match skill,
in order to support continued engagement.

Too Difficult

Too Easy

Flow
Channel

Low
Skill

High
Skill

By conducting a cheap, abstract simulation of the player�s
progression through state space, we hope to predict when
the player is repeatedly entering an undesirable loop, and
help them get out of it.

Goals
There are many takes on whether this type of adjustment is
�desirable� or �necessary� for a good game experience.
Without delving into a philosophical discussion of play
aesthetics or game design, we can parameterize our goals
with respect to adjustment as follows.

We want Hamlet�s modifications to encourage both local
and long-term success and engagement. We want the
system to support the player � without eliminating
negative feedback and making everything very easy and
predictable We want Hamlet to intervene just enough � so
that system behavior is relatively stable and predictable
over time [Rollings, Morris, 2000]. As such, we aim to:

• Assess when adjustment is necessary
• Determine which changes should be made
• Execute changes as seamlessly as possible

We will now discuss assessment and adjustment in light of
these goals, state our observations regarding overall system
behavior, and close with preliminary conclusions.

Assessment
Our goal is to determine when a player is flailing. In many
FPS games, this is characterized by repeated inventory
shortfalls � places where the player�s available resources
fail to meet the immediate demands.

By observing trends in the player�s inventory expenditure,
we can watch for potential shortfalls and thus, pinpoint
potential adjustment opportunities. Our first task is to
establish metrics for assessing statistical data within the
game world. Let us start with the direct observation of
player health � and more specifically, the damage a player
takes over time.

Damage
We begin by assuming a sequence of random
measurements of damage x(t), each of which has some
probability distribution dp .

The total damage at a given point in time is then the sum of
these random variables. By the Central Limit Theorem,
this sum converges to a Gaussian distribution.3

3 In practice, these probabilities will vary depending on the
application domain. Here, we assume the probability of being hit

Because we are summing the distributions

1
()

t

i
i

=
∑x

The meanµ of the resulting sum is the sum of the means

1
() (())

t

d
i

x i t x t tµ µ
=

 
= Ε = Ε = 

 
∑

And the variance is the sum of the variances

2 2

1
()

t

d
i

d

V x i t

t

σ σ

σ σ
=

 
= = 

 

=

∑

The distribution of damage then becomes

2 2() 21()
2

xp x e µ σ

σ π
− −=

We can now state the cumulative distribution function of
the Gaussian distribution � also known as the error
integral. Here, F(d) represents the probability of receiving
d or less damage on a given tick:

2 2() (2)() () 1 2
d d

xF d p x dx e dxµ σσ π −

−∞ −∞

 = =  ∫ ∫

Obviously, this is not a closed form equation. But lucky
for us, the error integral is implemented as erf(x) in the
standard C and C++ math libraries.

Now that we know what the distribution of damage looks
like, we can start to approximate inventory levels for
player health.

Inventory
In any given system, the level of inventory will depend on
the rates of flow in and out. This is often discussed in
terms of supply (input flow) and demand (output flow)
[Mankiw, 1997].

is constant, and so the process is stationary. We also assume that
the probability of being hit at one moment is independent of
whether you were hit before, so the process is uncorrelated, or
�white�.

In the FPS domain, player inventory continually shifts.
Items are supplied as the player explores the environment
(found in the open, discovered inside crates, or field-
stripped from the bodies of foes), and depleted by various
interactions within it (ammunition and health spent in
combat, damage taken from falls, exposure to poison and
so on).

Using inventory theory equations, we can model the
player�s overall inventory as well as the flow if specific
inventory items in and out of the system.

Shortfalls
To predict an inventory shortfall, let z denote the inventory
level at the given time. The expected shortfall is the
cumulative probability of damage exceeding the initial
level or Ps, calculated as follows:

2 2() 2

2

(()) 1 (()) 1 ()

1 1

s

t

z

P P x t z P x t z F z

e dtµ σ

πσ

∞
− −

= > = − < = −

= − ∫

With this equation, and our handy erf functions, shortfall
can be computed as a function of initial health, mean and
standard deviation of loss of health over time.4

We can use this calculation of eminent health shortfalls as
a crude indicator of when the player is in need.5 Then, we
can move beyond assessment to adjustment � analyzing the
systems that impact the inventory item in question, and
adjusting the game accordingly.

4 This approach is best at predicting events at times in the not-
too-distant future. With small sample sizes, the CLT is less
accurate and standard deviation more likely to fluctuate.
5 In application, these computations can be modified according to
the specific game under consideration. Different games may
require more complicated distributions, exhibiting a significantly
different mean or standard deviation.

Adjustment
We are currently experimenting with a number of
adjustment protocols in the Hamlet system. Adjustment
actions, when combined with cost estimations, will form
adjustment policies. What follows is a description of
action, cost evaluation and policy designs, and an example
illustration of the final goals for player-system interaction.

Actions
When completed, Hamlet will support two types of
adjustment actions.

Reactive actions will adjust elements that are �in
play� or �on stage� (i.e. entities that have noticed the
player and are attacking). This includes directly
manipulating the accuracy or damage of attacks,
strength of weapons, level of health, and so on.

Proactive actions will adjust �off stage� elements (i.e.
entities that are spawned but inactive or waiting to
spawn). This includes changes to the type, spawning
order, health, accuracy, damage and packing
properties of entities that have yet to appear on screen.

While proactive changes give us more power over the
game�s behavior, they happen at a greater distance from
the point of action � which can introduce uncertainty as to
their effectiveness. As a result, they are harder to evaluate.
In the worst case, they may actually require subsequent
reactive adjustments, causing a spiraling loop of change,
resulting in erratic and unpredictable behavior.

Reactive adjustments map more directly to changes in the
gameplay experience. They are simple to execute, and
happen closer to the point of intersection/interaction
between the player and game system. Changing the
strength or accuracy of an entity that is under attack has a
straightforward impact on its life expectancy � and upon
on the life expectancy of the player.

In the end, it is a tradeoff. Reactive changes run the risk of
disrupting the player�s sense of disbelief. They can make it
difficult to interpret the immediate behavior of in-game
obstacles, causing the game to appear schizophrenic.6
Proactive changes, because they happen �in the wings�,
are less likely to interrupt the player�s suspension of
disbelief.

6 A problem that plagues many interactive AI research projects
[Sengers, 1998].

t
0

0

Inventory level as it fluctuates over the period of time t. A
shortfall occurs when demand surpasses supply.

Cost
Determining the cost of a given action, then, is clearly
critical to the process of gradual but effective adjustment.
If the system intervenes in the same way every time, the
game might start to feel trivial, repetitive or boring. If it
continually makes interventions without considering the
player�s perception of those interactions, it may interrupt
their overall suspension of disbelief.

Individual adjustment actions will be offset by
observations about

! The player�s current location in the level.
! How far along the player is in the game.
! How often they�ve died (at this location, in the

level, and in the game)
! How often they�ve repeated the current encounter
! How many times we�ve intervened in the past.

By calculating a cost for each intervention, and modifying
it as our understanding of the player�s performance
changes, we hope to dynamically adjust the game in more
responsive and responsible fashion.

Policies
Hamlet can combine these actions and cost calculations to
create �modes of control� � overall adjustment policies
that control the supply and demand of goods according to
overall player experience goals. Two examples follow.

Comfort Zone: This policy will keep players within a
mean range of health points over time. Entities will be
tuned to shoot less often and less accurately, and
health is readily available. The goal is to keep the
player at about 50% health, occasionally dipping near
25% or cresting to 75%.

Trial and error are important in this policy � enemies will
be tuned only if they repeatedly overwhelm the player.
Much like a benevolent babysitter, it intervenes frequently,
but leaves room for mistakes. Overall, the policy will be
characterized by steady demand and predictable supply.

Discomfort Zone: This policy is designed for more
experienced players. The entities in a DZ game are
increasingly accurate, ammo and health relatively
scarce. The goal here is to keep the player �on the
edge of her seat� � constantly on the alert for enemies,
and fighting back from 15 or 20% health most of the
time.

This policy is much more like an aggressive drill sergeant
or boxing coach. It sets high standards, but delivers
enough positive feedback to keep the player energized and

engaged. This policy will be characterized by scarce but
goal-oriented supply and sporadic but high demand.

Example
A player reaches the second engagement of Case Closed.
There are four enemies, and she has 45% health. Hamlet
observes her inventory stats, to see if she is flailing � in
this case, repeatedly dying before completing the
engagement, often with a majority of enemies standing.

In immediate response to observed flailing, Hamlet may

! Donate a health pack somewhere in the scene.
! Upgrade the strength of her ammo.
! Reduce the accuracy or strength of enemy attacks.

Depending on the success of these individual actions,
Hamlet can intervene again. If, over time, the player
requires significant adjustments to the initial levels set by
the game designer, Hamlet can also

! Reduce initial strength and health of pending
enemies.

! Pack more health and ammunition on the bodies
of vanquished foes.

! Replace pending enemies with a type the user has
had more success with in the past.

The key here is that Hamlet will intervene iteratively,
allowing for trial and error. The game will gradually
change to accommodate the current player.

Preliminary Conclusions

Simulation
It�s clear that work of this nature involves tradeoffs with
respect to the type, number and frequency of adjustments
performed. There is also a performance tradeoff here
between accuracy and generality/speed.

The second enemy encounter of Case Closed.

If our goal was to do a �correct� simulation of each
individual user�s performance, we would need to perform
several trials per user. However, as we are trying for a
�best fit� given current information, this is not necessary.

In fact, we assume that a perfect simulation of the player�s
progress through the environment would actually be less
useful due to the time constraints of real-time gameplay
and the limitations of commercial gaming hardware.

By conducting an abstract simulation of the user�s
trajectory, we essentially generate an envelope of possible
locations within the state space, and construct our system
to direct that envelope away from undesirable areas of
gameplay.

Evaluation
While more advanced techniques can map out many of the
finer relationships in game systems, it is unclear to us at
this time whether this is necessary, or even desirable.
Future work may comment on the viability and value of
alternative metrics, policies and so on.

In the meantime, we plan to evaluate a broad sample of
users interacting with the Hamlet system. We will attach a
simple heart-rate monitor to a variety of players, have them
play the game on both settings, and then map out the
results.

If the adjusted game is able to keep test subjects equally
aroused over time, while dynamically adjusting to keep
them alive longer, then we will consider the work a
success. 7

References

Adams, E., 2002. Balancing Games with Positive
Feedback. Gamasutra.com.
Arey, D., Wells, E., 2001. Balancing Act: The Art and
Science of Dynamic Difficulty Adjustment. 2001 Game
Developers Conference, San Jose

Bethke, E., 2003. Game Development and Production.
Plano, Texas: Wordware.

Castronova, E., 2001. Virtual Worlds: A First-Hand
Account of Market and Society on the Cyberien Fronier.
Working Paper, Center for Economic Studies and IFO
Institute for Economic Research: Munich, Germany.

Carpenter, A., 2003. Applying Risk Analysis to Play-
Balance RPGs. Gamasutra.com.

7 And then - we�ll try it on our parents!

Csikszentmhalyi, M.1990. Flow: The Psychology of
Optimal Experience. NY, NY: Harper Collins
Berkely, California: Osborne/McGraw-Hill.

Crawford, C. 1984. The Art of Computer Game Design.
Berkely, California: Osborne/McGraw-Hill.

Jensen, P. A., Bard, J. F., 2002. Operations Research
Models and Methods. Hoboken, NJ, Wiley.

Kennerly, D., 2003. Better Game Design through Data
Mining. Gamasutra.com.

Khoo, A., Hunicke, R., et al, 2002. FlexBot, Groo, Patton
and Hamlet: Research using Computer Games as a
Platform. Technical content paper for Intelligent Systems
Demonstration, Proceedings of the Eighteenth National
Conference on Artificial Intelligence.

LeBlanc, M., Hunicke, R., et al 2001-2004 � Game Tuning
and Design Workshop. Game Developers Conference:
2001, San Jose.

Luenberger, D. G., 1979. Introduction to Dynamic
Systems: Theory, Models, and Applications. New York:
John Wiley and Sons, Inc.

Mankiw, N. G., 1997. Principles of Microeconomics. Fort
Worth, Texas: Dryden.

Pfeiffer, B., 2003. AI to Control Pacing in Games.
Proceedings, IC2 GameDev Workshop, Univeristy of
Texas, Austin.

Rabin, S., 2002. editor, AI Programming Wisdom,
Hingham, Massachusetts: Charles River Media.

Rollings, A., Adams, E., 2003. On Game Design.
Indianapolis: New Riders.

Rollings, A., Morris, D., 2000. Game Architecture and
Design. Scottsdale, Arizona: Corliolis.

Rouse, R., 2001. Game Design: Theory and Practic,
Plano, Texas: Wordware.

Stengel, R. F., 1994. Optimial Control and Estimation.
New York: Dover.

Sengers, P., 1998. Anti-Boxology: Agent Design in
Cultural Context. PhD thesis, Carnigie Melon University,
Pittsburg.

Simpson, Z., 1999. The In-game Economics of Ultima
Online. Game Developers Conference: 2000, San Jose.

