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Abstract 
Video Games are boring when they are too easy and 
frustrating when they are too hard. While most single-
player games allow players to adjust basic difficulty (easy, 
medium, hard, insane), their overall level of challenge is 
often static in the face of individual player input. This lack 
of flexibility can lead to mismatches between player ability 
and overall game difficulty. 
 
In this paper, we explore the computational and design 
requirements for a dynamic difficulty adjustment system. 
We present a probabilistic method (drawn predominantly 
from Inventory Theory) for representing and reasoning 
about uncertainty in games. We describe the 
implementation of these techniques, and discuss how the 
resulting system can be applied to create flexible interactive 
experiences that adjust on the fly. 

Introduction 
Video games are designed to generate engaging 
experiences: suspenseful horrors, whimsical amusements, 
fantastic adventures. But unlike films, books, or televised 
media � which often have similar experiential goals � 
video games are interactive. Players create meaning by 
interacting with the game�s internal systems.  
 
One such system is inventory � the stock of items that a 
player collects and carries throughout the game world.1 
The relative abundance or scarcity of inventory items has a 
direct impact on the player�s experience.2 As such, games 
are explicitly designed to manipulate the exchange of 
resources between world and player. [Simpson, 2001] 
 
This network of producer-consumer relationships can be 
viewed as an economy � or more broadly, as a dynamic 
system [Castronova, 2000, Luenberger, 79]. 
                                                 
1 Inventory items for �first-person shooters� include health, 
weapons, ammunition and power-ups like shielding or temporary 
invincibility.   
2 A surplus of ammunition affords experimentation and �shoot 
first� tactics, while limited access to recovery items (like health 
packs) will promote a more cautious approach to threatening 
situations. 

Game developers iteratively refine these systems based on 
play testing feedback � tweaking behaviors and settings 
until the game is balanced. While balancing, they often 
analyze systems intuitively by tracking specific identifiable 
patterns or types of dynamic activity. It is a difficult and 
time consuming process [Rollings and Adams, 2003]. 
 
While game balancing and tuning can�t be automated, 
directed mathematical analysis can reveal deeper structures 
and relationships within a game system. With the right 
tools, researchers and developers can calculate 
relationships in less time, with greater accuracy. 
 
In this paper, we describe a first step towards such tools. 
Hamlet is a Dynamic Difficulty Adjustment (DDA) system 
built using Valve�s Half Life game engine. Using 
techniques drawn from Inventory Theory and Operations 
Research, Hamlet analyzes and adjust the supply and 
demand of game inventory in order to control overall game 
difficulty.  

Prior Work 

Commercial DDA 
While it has potential benefits, DDA does not come 
cheaply. Ultimately, DDA systems take control away from 
the designer and put it in the hands of code, which has 
obvious drawbacks.  
 
Few commercial developers have implemented adjustment 
systems for their games, and even fewer have shipped 
them. For a discussion of commercial DDA system designs 
and failures, see [Arey, Wells, 2001].  
 
To the extent that commercial systems have been formally 
proposed or published, there are two basic approaches. The 
first is predominantly manual; designers annotate game 
tasks and obstacles with information about their difficulty 
prior to evaluation [Pfeiffer, 2003]. The second champions 
a combination of data mining and off-line analysis 
[Kennerly, 2003].  
 



We propose a probabilistic technique that dynamically 
evaluates the difficulty of given obstacles based on user 
performance, as the game is running. 

Genres 
Difficulty adjustment can be applied in almost any game 
genre, but is often discussed within the context of 
Massively Multiplayer Online Games. Due to the size of 
these games, and their largely stats-based nature, even 
slight imbalances can have an extremely negative impact 
on the overall player experience � but tweaking the live 
game is also disruptive. 
 
As a result, MMOG developers want to know which 
elements should be tuned, and how that can be achieved 
successfully in a live game. Specifically � when is it 
necessary to tweak an in-game system? Which adjustments 
will result in direct, predictable and desirable changes to 
the system dynamics? [Carpenter, 2003] 
 
FPS game economies are relatively simple compared to 
online game economies. But the combat economics of FPS 
games are often repeated in sub-economies of MMOG and 
other game spaces.  We investigate the FPS environment 
as a first step towards understanding the dynamics of 
larger, more complex game economies.  
 
 

Hamlet System 

Architecture 
The Hamlet system is primarily a set of libraries embedded 
in the Half Life game engine. This includes functions for  
 

• Monitoring game statistics according to pre-
defined metrics. 

• Defining adjustment actions and policies. 
• Executing those actions and policies. 
• Displaying data and system control settings. 
• Generating play session traces.  

 
As the player moves throughout the game world, Hamlet 
uses statistical metrics to monitor incoming game data. 
Over time, Hamlet estimates the player�s future state from 
this data. When an undesirable but avoidable state is 
predicted, the system intervenes and adjusts game settings 
as necessary.  
 
Basically, we are trying to predict when the player is 
�flailing� � repeatedly edging towards a state where her 
current means can no longer accomplish necessary and 
immediate ends.  When we detect flailing behavior, we 
want to intervene � helping the player progress through the 
game.  

Flow 
Game adjustment is not as simple as adding health when 
the player is in trouble; it is a design problem that involves 
estimating when and how to intervene. Keeping the player 
challenged and interested is especially difficult in 
interactive contexts. [LeBlanc et al, 2001-2004]. 
 
One common approach to player investment is the flow 
model developed by M. Csikszentmihalyi. Here our goal is 
to keep the player in the flow channel � away from states 
where the game is far too challenging, or way too easy. 
 

 
Looking at the FPS environment, we can abstract 
gameplay with a relatively simple state transition diagram. 
Players engage in loops of searching, retrieving, solving 
and fighting.  With each new level, new enemies and 
obstacles are introduced. Overall, difficulty increases with 
time, as does skill acquisition. 

 
Hamlet is designed to keep the player in the flow channel 
by encouraging certain states, and discouraging others. 
Effectively, our goal is to keep the player in engaging 
interaction loops, for the most appropriate period of time, 
given their level of overall skill and game-specific 
experience.  
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A simplified state transition diagram for the First Person 
Shooter game genre.  
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By conducting a cheap, abstract simulation of the player�s 
progression through state space, we hope to predict when 
the player is repeatedly entering an undesirable loop, and 
help them get out of it.  

Goals 
There are many takes on whether this type of adjustment is 
�desirable� or �necessary� for a good game experience.  
Without delving into a philosophical discussion of play 
aesthetics or game design, we can parameterize our goals 
with respect to adjustment as follows.  
 
We want Hamlet�s modifications to encourage both local 
and long-term success and engagement. We want the 
system to support the player � without eliminating 
negative feedback and making everything very easy and 
predictable We want Hamlet to intervene just enough � so 
that system behavior is relatively stable and predictable 
over time [Rollings, Morris, 2000]. As such, we aim to: 
 

• Assess when adjustment is necessary  
• Determine which changes should be made  
• Execute changes as seamlessly as possible 

 
We will now discuss assessment and adjustment in light of 
these goals, state our observations regarding overall system 
behavior, and close with preliminary conclusions. 

Assessment 
Our goal is to determine when a player is flailing. In many 
FPS games, this is characterized by repeated inventory 
shortfalls � places where the player�s available resources 
fail to meet the immediate demands.  
 
By observing trends in the player�s inventory expenditure, 
we can watch for potential shortfalls and thus, pinpoint 
potential adjustment opportunities.  Our first task is to 
establish metrics for assessing statistical data within the 
game world. Let us start with the direct observation of 
player health � and more specifically, the damage a player 
takes over time.  

Damage 
We begin by assuming a sequence of random 
measurements of damage x(t), each of which has some 
probability distribution dp .  
 
The total damage at a given point in time is then the sum of 
these random variables. By the Central Limit Theorem, 
this sum converges to a Gaussian distribution.3  
                                                 
3 In practice, these probabilities will vary depending on the 
application domain. Here, we assume the probability of being hit 

 
Because we are summing the distributions  
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And the variance  is the sum of the variances 
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The distribution of damage then becomes 
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We can now state the cumulative distribution function of 
the Gaussian distribution � also known as the error 
integral. Here, F(d) represents the probability of receiving 
d or less damage on a given tick: 
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Obviously, this is not a closed form equation. But lucky 
for us, the error integral is implemented as erf(x) in the 
standard C and C++ math libraries.  
 
Now that we know what the distribution of damage looks 
like, we can start to approximate inventory levels for 
player health.   

Inventory 
In any given system, the level of inventory will depend on 
the rates of flow in and out.  This is often discussed in 
terms of supply (input flow) and demand (output flow) 
[Mankiw, 1997].  
 
                                                                                 
is constant, and so the process is stationary. We also assume that 
the probability of being hit at one moment is independent of 
whether you were hit before, so the process is uncorrelated, or 
�white�. 



 
 
In the FPS domain, player inventory continually shifts. 
Items are supplied as the player explores the environment 
(found in the open, discovered inside crates, or field-
stripped from the bodies of foes), and depleted by various 
interactions within it (ammunition and health spent in 
combat, damage taken from falls, exposure to poison and 
so on).  
 
Using inventory theory equations, we can model the 
player�s overall inventory as well as the flow if specific 
inventory items in and out of the system.  

Shortfalls 
To predict an inventory shortfall, let z denote the inventory 
level at the given time. The expected shortfall is the 
cumulative probability of damage exceeding the initial 
level or Ps, calculated as follows: 
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With this equation, and our handy erf functions, shortfall 
can be computed as a function of initial health, mean and 
standard deviation of loss of health over time.4   
 
We can use this calculation of eminent health shortfalls as 
a crude indicator of when the player is in need.5  Then, we 
can move beyond assessment to adjustment � analyzing the 
systems that impact the inventory item in question, and 
adjusting the game accordingly.  
                                                 
4 This approach is best at predicting events at times in the not-
too-distant future. With small sample sizes, the CLT is less 
accurate and standard deviation more likely to fluctuate.  
5 In application, these computations can be modified according to 
the specific game under consideration. Different games may 
require more complicated distributions, exhibiting a significantly 
different mean or standard deviation. 

Adjustment 
We are currently experimenting with a number of 
adjustment protocols in the Hamlet system. Adjustment 
actions, when combined with cost estimations, will form 
adjustment policies. What follows is a description of 
action, cost evaluation and policy designs, and an example 
illustration of the final goals for player-system interaction. 

Actions 
When completed, Hamlet will support two types of 
adjustment actions. 
  

Reactive actions will adjust elements that are �in 
play� or �on stage� (i.e. entities that have noticed the 
player and are attacking). This includes directly 
manipulating the accuracy or damage of attacks, 
strength of weapons, level of health, and so on. 

 
Proactive actions will adjust �off stage� elements (i.e. 
entities that are spawned but inactive or waiting to 
spawn). This includes changes to the type, spawning 
order, health, accuracy, damage and packing 
properties of entities that have yet to appear on screen.  
 

While proactive changes give us more power over the 
game�s behavior, they happen at a greater distance from 
the point of action � which can introduce uncertainty as to 
their effectiveness. As a result, they are harder to evaluate. 
In the worst case, they may actually require subsequent 
reactive adjustments, causing a spiraling loop of change, 
resulting in erratic and unpredictable behavior. 
 
Reactive adjustments map more directly to changes in the 
gameplay experience. They are simple to execute, and 
happen closer to the point of intersection/interaction 
between the player and game system. Changing the 
strength or accuracy of an entity that is under attack has a 
straightforward impact on its life expectancy � and upon 
on the life expectancy of the player.  
 
In the end, it is a tradeoff. Reactive changes run the risk of 
disrupting the player�s sense of disbelief. They can make it 
difficult to interpret the immediate behavior of in-game 
obstacles, causing the game to appear schizophrenic.6 
Proactive changes, because they happen �in the wings�, 
are less likely to interrupt the player�s suspension of 
disbelief.  
 
                                                 
6 A problem that plagues many interactive AI research projects 
[Sengers, 1998]. 
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Inventory level as it fluctuates over the period of time t. A 
shortfall occurs when demand surpasses supply. 



Cost 
Determining the cost of a given action, then, is clearly 
critical to the process of gradual but effective adjustment. 
If the system intervenes in the same way every time, the 
game might start to feel trivial, repetitive or boring.  If it 
continually makes interventions without considering the 
player�s perception of those interactions, it may interrupt 
their overall suspension of disbelief.  
 
Individual adjustment actions will be offset by 
observations about  
 

! The player�s current location in the level. 
! How far along the player is in the game. 
! How often they�ve died (at this location, in the 

level, and in the game) 
! How often they�ve repeated the current encounter 
! How many times we�ve intervened in the past. 

 
By calculating a cost for each intervention, and modifying 
it as our understanding of the player�s performance 
changes, we hope to dynamically adjust the game in more 
responsive and responsible fashion.   

Policies 
Hamlet can combine these actions and cost calculations to 
create �modes of control� � overall adjustment policies 
that control the supply and demand of goods according to 
overall player experience goals. Two examples follow. 
 

Comfort Zone: This policy will keep players within a 
mean range of health points over time. Entities will be 
tuned to shoot less often and less accurately, and 
health is readily available.  The goal is to keep the 
player at about 50% health, occasionally dipping near 
25% or cresting to 75%.  

 
Trial and error are important in this policy � enemies will 
be tuned only if they repeatedly overwhelm the player. 
Much like a benevolent babysitter, it intervenes frequently, 
but leaves room for mistakes. Overall, the policy will be 
characterized by steady demand and predictable supply. 
 

Discomfort Zone: This policy is designed for more 
experienced players. The entities in a DZ game are 
increasingly accurate, ammo and health relatively 
scarce. The goal here is to keep the player �on the 
edge of her seat� � constantly on the alert for enemies, 
and fighting back from 15 or 20% health most of the 
time.  

 
This policy is much more like an aggressive drill sergeant 
or boxing coach. It sets high standards, but delivers 
enough positive feedback to keep the player energized and 

engaged. This policy will be characterized by scarce but 
goal-oriented supply and sporadic but high demand.  

Example 
A player reaches the second engagement of Case Closed. 
There are four enemies, and she has 45% health. Hamlet 
observes her inventory stats, to see if she is flailing � in 
this case, repeatedly dying before completing the 
engagement, often with a majority of enemies standing.  
 

 
 

 
 
In immediate response to observed flailing, Hamlet may  
 

! Donate a health pack somewhere in the scene.  
! Upgrade the strength of her ammo. 
! Reduce the accuracy or strength of enemy attacks. 

 
Depending on the success of these individual actions, 
Hamlet can intervene again. If, over time, the player 
requires significant adjustments to the initial levels set by 
the game designer, Hamlet can also  
 

! Reduce initial strength and health of pending 
enemies.  

! Pack more health and ammunition on the bodies 
of vanquished foes. 

! Replace pending enemies with a type the user has 
had more success with in the past. 

 
The key here is that Hamlet will intervene iteratively, 
allowing for trial and error. The game will gradually 
change to accommodate the current player.   

Preliminary Conclusions 

Simulation 
It�s clear that work of this nature involves tradeoffs with 
respect to the type, number and frequency of adjustments 
performed. There is also a performance tradeoff here 
between accuracy and generality/speed. 

The second enemy encounter of Case Closed.



 
If our goal was to do a �correct� simulation of each 
individual user�s performance, we would need to perform 
several trials per user. However, as we are trying for a 
�best fit� given current information, this is not necessary.  
 
In fact, we assume that a perfect simulation of the player�s 
progress through the environment would actually be less 
useful due to the time constraints of real-time gameplay 
and the limitations of commercial gaming hardware.  
 
By conducting an abstract simulation of the user�s 
trajectory, we essentially generate an envelope of possible 
locations within the state space, and construct our system 
to direct that envelope away from undesirable areas of 
gameplay.   

Evaluation 
While more advanced techniques can map out many of the 
finer relationships in game systems, it is unclear to us at 
this time whether this is necessary, or even desirable. 
Future work may comment on the viability and value of 
alternative metrics, policies and so on. 
 
In the meantime, we plan to evaluate a broad sample of 
users interacting with the Hamlet system.  We will attach a 
simple heart-rate monitor to a variety of players, have them 
play the game on both settings, and then map out the 
results.   
 
If the adjusted game is able to keep test subjects equally 
aroused over time, while dynamically adjusting to keep 
them alive longer, then we will consider the work a 
success. 7 

References 
 
Adams, E., 2002. Balancing Games with Positive 
Feedback. Gamasutra.com. 
Arey, D., Wells, E., 2001. Balancing Act: The Art and 
Science of Dynamic Difficulty Adjustment. 2001 Game 
Developers Conference, San Jose  
 
Bethke, E., 2003. Game Development and Production. 
Plano, Texas: Wordware.  
 
Castronova, E., 2001. Virtual Worlds: A First-Hand 
Account of Market and Society on the Cyberien Fronier.  
Working Paper, Center for Economic Studies and IFO 
Institute for Economic Research: Munich, Germany. 
 
Carpenter, A., 2003. Applying Risk Analysis to Play-
Balance RPGs. Gamasutra.com. 
                                                 
7 And then - we�ll try it on our parents! 

 
Csikszentmhalyi, M.1990. Flow: The Psychology of 
Optimal Experience. NY, NY: Harper Collins  
Berkely, California: Osborne/McGraw-Hill. 
 
Crawford, C. 1984. The Art of Computer Game Design.  
Berkely, California: Osborne/McGraw-Hill. 
 
Jensen, P. A., Bard, J. F., 2002. Operations Research 
Models and Methods. Hoboken, NJ, Wiley. 
 
Kennerly, D., 2003. Better Game Design through Data 
Mining. Gamasutra.com. 
 
Khoo, A., Hunicke, R., et al, 2002.  FlexBot, Groo, Patton 
and Hamlet: Research using Computer Games as a 
Platform. Technical content paper for Intelligent Systems 
Demonstration, Proceedings of the Eighteenth National 
Conference on Artificial Intelligence. 
 
LeBlanc, M., Hunicke, R., et al 2001-2004 � Game Tuning 
and Design Workshop. Game Developers Conference: 
2001, San Jose.  
 
Luenberger, D. G., 1979. Introduction to Dynamic 
Systems: Theory, Models, and Applications. New York: 
John Wiley and Sons, Inc.  
 
Mankiw, N. G., 1997. Principles of Microeconomics. Fort 
Worth, Texas: Dryden. 
 
Pfeiffer, B., 2003. AI to Control Pacing in Games. 
Proceedings, IC2 GameDev Workshop, Univeristy of 
Texas, Austin. 
 
Rabin, S., 2002. editor, AI Programming Wisdom, 
Hingham, Massachusetts: Charles River Media. 
 
Rollings, A., Adams, E., 2003. On Game Design. 
Indianapolis: New Riders.  
 
Rollings, A., Morris, D., 2000. Game Architecture and 
Design. Scottsdale, Arizona: Corliolis. 
 
Rouse, R., 2001. Game Design: Theory and Practic, 
Plano, Texas: Wordware. 
 
Stengel, R. F., 1994. Optimial Control and Estimation. 
New York: Dover. 
 
Sengers, P., 1998. Anti-Boxology: Agent Design in 
Cultural Context. PhD thesis, Carnigie Melon University, 
Pittsburg. 
 
Simpson, Z., 1999. The In-game Economics of Ultima 
Online. Game Developers Conference: 2000, San Jose. 
 



 
 
 
 
 


