Planning

CS395 GAI
Spring 2005
Overview

- Limitations of Finite State Machines
- STRIPS-style planning
- Hierarchical Task Networks
Some Limitations of Finite State Machines for Planning

- Difficult to perform sequences of actions
- Plans become hard-coded in the execution environment
 - How to extend to achieve new goals in an expansion pack?
- Pursuing multiple goals simultaneously can lead to an explosion in the complexity of an FSN
- Coordination between agents requires explicit encodings
STRIPS-style planning

- Stanford Research Institute Problem Solver
- Turns planning into a traditional search problem
- Core assumptions (closed-world)
 - Actions always succeed
 - Only changes that takes place are those indicated by the operators
STRIPS Components

• States
• Goals
• Operators
 – Preconditions
 – Effects
 • Add
 • Delete
General-Purpose Planning: State & Goals

- **Initial state**: (on A Table) (on C A) (on B Table) (clear B) (clear C)
- **Goals**: (on C Table) (on B C) (on A B) (clear A)

(Ke Xu)
General-Purpose Planning: Operators

Operator: (Unstack ?x)
- **Preconditions**: (on ?x ?y) (clear ?x)
- **Effects**:
 - **Add**: (on ?x table) (clear ?y)
 - **Delete**: (on ?x ?y)

(Ke Xu)
Planning: Search Space

(Michael Moll)
Hierarchical Task Networks

- Decomposition of higher-level tasks or strategies into lower-level components
- Components of a HTN
 - Tasks
 - Methods
 - Operators
 - Critics
- More robust with imperfect information
- Support for partial re-planning
Components of a HTN

- **Tasks**
 - Non-primitive (compound tasks)
 - Primitive (actions)
- **Methods**
 - Expand or reduce non-primitive tasks
 - Defines preconditions that must be met for expansion to occur
- **Operators**
 - Effects only
 - Unlike STRIPS-style operators, have no preconditions
- **Critics**
 - De-conflict choices
 - Which of these should I try first?
 - Small bits of heuristic knowledge
HTN Example

Task: Explode the target

Subtasks:
- Get a better weapon
- Approach to the plant site
- Secure the plant site
- Plant the bomb
- Guard the bomb

- Buy
- Pick
- Kill & Pick
- Select a route
- Kill enemies
- Cover teammates

Method:
- Head: Plant Bomb
- Preconditions: Bomb Site Secured
- Subtasks: Plant

(Ke Xu)
The HTN Planning Procedure

Problem P

- Primitive Only?
 - N: Choose t
 - M: Choose m
 - N: Replace t
 - Y: Resolve c
 - Y: Return failure
 - Y: Resolve c
 - Y: Resolve c

(Ke Xu)
Re-planning in HTN

- Partial Re-planning
 - Anytime
 - Anywhere
 - Repair rather than re-plan from sketch
 - Propagate the effect of re-planning

- Example

```
Top-Level Task
Kill Agent
```

```
T1
Pick-Up Weapon X
```

```
T2
Attack Agent
```

(Ke Xu)
Case Study: Computer Bridge

• Closed-world domain
 – But much more complex than chess
Case Study: Computer Bridge

- Chess: better than all but the best humans
- Bridge: worse than many good players

- Why bridge is difficult for computers
 - It is an imperfect information game
 - Don’t know what cards the others have (except the dummy)
 - Many possible card distributions, so many possible moves

- If we encode the additional moves as additional branches in the game tree, this increases the number of nodes exponentially
 - worst case: about 6×10^{44} leaf nodes
 - average case: about 10^{24} leaf nodes

Not enough time to search the game tree

(Dana S. Nau)
Case Study: Computer Bridge

• Bridge is a game of planning
 – Declarer plans how to play the hand by combining various strategies (ruffing, finessing, etc.)
 – If a move doesn’t fit into a sensible strategy, then it probably doesn’t need to be considered

• HTN approach for declarer play
 – Use HTN planning to generate a game tree in which each move corresponds to a different strategy, not a different card
 • Reduces average game-tree size to about 26,000 leaf nodes

• Bridge Baron: implements HTN planning
 – Won the 1997 World Bridge Computer Challenge
 – All commercial versions of Bridge Baron since 1997 have include an HTN planner (has sold many thousands of copies)

(Dana S. Nau)
Case Study: Unreal Bots

• Effectively an open-world domain
 – Virtually impossible to represent all possible states of a multiplayer Unreal game
Case Study: Unreal Bots

- **Method**

 Head: Domination(X)

 Preconditions:
 1. `numberPlayersTeam(Nteam),`
 2. `numberLocations(X,N),`
 3. `Nteam > N/2 + 2`
 4. `SelectLcsGeographTogether(X,P,N/2+1)`
 5. `Divide3Groups(N/2+1,T1,T2,T3),`
 6. `RemainingLocations(RP,X,P)`

 Subtasks:
 1. `CoverLocations(T1,P)`
 2. `PatrolLocations(T2,P)`
 3. `HarrassLocations(T3,RP)`

 Orderings:
 - none

- **Operator**

 Head: CoverLocation(B,L)

 Effects:
 - `Move(B,L)`
 - `Defend(B,L)`

(Ke Xu, Héctor Muñoz-Avila)
Case Study: Unreal Bots

HTN Method

Head: Domination

Preconditions:
- LocsGeographTogether(P,RP)
- Divide3Groups(T1,T2,T3)

Subtasks:
- CoverLocations(T1,P)
- PatrolLocations (T2,P)
- HarrassLocations(T3,RP)

(Ke Xu, Héctor Muñoz-Avila)
Case Study: Unreal Bots

• Coordinated Actions
 – Coordination is represented in the hierarchy, but not in the operators

• Dealing with changing conditions
 – Pre-defined thresholds for strategies used to trigger partial re-planning