
D. Engler, F. M. Kaashoek and J.

O’Toole Jr.

SOSP 1995

Presented by Fabián

Exokernel: An OS Architecture for
Application-Level Resource Management

What is a traditional OS?

Resource manager – bottom-up/system-view

– Everybody gets a fair-share of a resource

– A control program to prevent errors & improper use

Extended machine – top-down/user-view

– Hides the messy details, presenting a virtual machine that's

easier to program than the HW

• Using several high-level abstractions; e.g. processes, files,

address spaces, IPC

• All applications must use these abstractions

• Un-trusted applications cannot modify the abstractions’

implementations

EECS 443 Advanced Operating Systems

Northwestern University

2

Motivation for Exokernels

Abstractions in traditional OS are overly general – all

what anyone may need

– Apps “pay” for what they don’t use, and

– Apps cannot take advantage of domain-specific optimizations

Fixed high-level abstractions

– Hurt application performance – both abstractions and their

implementations are compromises, i.e. somebody gets less

than what they need/want

– Hide information from application, making it hard for the app

to implement their own resource mgmt abstractions

– Limit the functionality of applications, as everybody must use

them, very few changes (and new ideas) are incorporated

EECS 443 Advanced Operating Systems

Northwestern University

3

High-level idea

End-to-end argument

– Applications know better than the OS what their resource

management decisions should be, so

– Implement traditional abstractions entirely at the app level

Exokernel – a thin layer that multiplexes and control

physical resources through low-level primitives

– Allows extensions, modifications, replacement of abstractions

– Simpler implementation that’s more reliable, more efficient,

easier to maintain

EECS 443 Advanced Operating Systems

Northwestern University

4

Frame buffer TLB Network Memory Disk

Secure bindingsExokernel

Hardware

High-level idea

Library OSs implement the needed abstractions

– Simpler and more specialized; no need to please everyone

– Closer integrated w/ apps, since they are not trusted by kernel

– More efficient given fewer kernel crossings

– Portability by implementing whatever needed abstractions

(e.g. LibOS that implement POSIX)

EECS 443 Advanced Operating Systems

Northwestern University

5

Library operating systems

Firefox

WWW

POSIX TCP

Applications Barnes-Hut

DSM

IPC
VM

Traps

Frame buffer TLB Network Memory Disk

Secure bindingsExokernel

Hardware

Exokernel Design

Main challenge – Give libOS freedom to manage
resources while protecting them from each other

To do this …
– Track ownership of resources

– Guard resource usage or binding points

– Revoke access to resources

Three techniques
– Secure bindings of applications to machine resources

– Visible resource revocation; applications participate in
resource revocation protocol

– Abort protocol to break secure bindings of uncooperative
applications

EECS 443 Advanced Operating Systems

Northwestern University

6

Design principles

Exokernel defines the I/F that libOS use to

claim/release/use resources

What guides the I/F design? Basic principles

– Expose hardware (securely) – central tenet of exokernel arch

(Resources exported – CPU, physical mem, TLB, …)

– Expose allocation – allow the app to request specific

resource, no implicit allocation

– Expose names – avoid indirection overhead and expose

useful resource attributes; also export bookeeping data

structures (e.g. freelists, cached TLB entries)

– Expose revocation – so that well behaved libOS can do

manage resources more effectively

Some policy is part of exokernel

– While exokernel cedes management of resources to libOSs,

– It still controls allocation and revocation of resources

EECS 443 Advanced Operating Systems

Northwestern University

7

Design – secure binding

Multiplex resources securely among Library OSes

Secure binding
– Decouples authorization from use

– Allows kernel to protect resource without understanding their
semantics

Better performance
– Authorization to use resource only done at bind time

– Simple, fast, protection check done when resource is
accessed

Example: TLB entry
– Virtual to physical mapping performed in the library (above

exokernel)

– Binding loaded into the kernel; used multiple times

EECS 443 Advanced Operating Systems

Northwestern University

8

Implementing secure bindings

Hardware mechanisms
– Capability for physical pages of a file

– Frame buffer regions (SGI) – HW checks the ownership tag
when I/O takes place

Software caching
– Exokernel large software TLB overlaying the hardware TLB

Downloading code into kernel
– E.g. Packet filter for demultiplexing network packets,

application specific handlers (ASH)

– Avoid expensive boundary crossings

– Similar to the SPIN idea

– Other use of downloaded code
• Execute code on behalf of an app that is not currently scheduled

• E.g. application handler for garbage collection could be installed
in the kernel

9

Design – visible revocation

Traditional revocation is invisible, application is not

involved (think page frames)

– Lower latency, no need to talk to the application

– Little information to guide it, since the application/libOS cannot

guide it or knows there’s a problem

Visible revocation for most things

– Including processor revocation, allowing the application to

decide what part of its state to keep

EECS 443 Advanced Operating Systems

Northwestern University

10

Design – abort protocol

For uncooperative libOSs, eventually use force

Simply terminating the libOS and associated app

makes it hard to work with, instead

Break all existing secure bindings and inform the libOS

– To inform repossession – repossession vector and

repossession exeption

– If resource has state, exokernel dumps this into another

memory or disk resource (potentially preconfigured by libOS)

Guarantee a minimum set of resources that will not be

repossess (expect under emergency and with previous

warning)

EECS 443 Advanced Operating Systems

Northwestern University

11

Experiment: Aegis & ExOS

Aegis: an exokernel on MIPS-based DECstation

– Glaze – another exokernel for SPARC-based shared-memory

multiprocessors

– Xok – … for Intel x86 computers

ExOS: the corresponding library OS

– Virtual memory, IPC are managed at application level

– Can be extended

Performance compared with Ultrix 4.2, a monolithic

UNIX

– But ExOS do not offer the same level of functionality as Ultrix

EECS 443 Advanced Operating Systems

Northwestern University

12

Aegis performance

Time (microsec) to perform a null procedure and

system calls (for Aegis’, first entry is for syscalls that

do not use the stack) – an order of magnitude

difference

Time (microsec) to dispatch an exception in Aegis and

Ultrix – two order of magnitude faster

EECS 443 Advanced Operating Systems

Northwestern University

13

ExOS – library OS

ExOS manages fundamental OS abstractions at
application level

Evaluation shows efficiency for
– IPC abstraction

– VM (a 150xc150 integer matrix multiplication)

– Remote communication using ASH
(application specific safe handlers)

EECS 443 Advanced Operating Systems

Northwestern University

14

Extensibility with ExOS

Easy to redefine OS abstractions

Examples

– Extensible RPC – a trusted LRPC that’s 40% faster than the

untrusted one

– Extensible page-table structures – linear or inverted, your

choice (inverted for sparse address space)

– Extensible schedulers – a proportional-share scheduling

mechanism (stride scheduler)

EECS 443 Advanced Operating Systems

Northwestern University

15

Summary

Argue OS abstractions can be bad for applications

Traditional OS abstractions implemented in Library
OS, at application level

Key idea – securely export hardware resources
without abstraction

Measurements indicate significant performance
benefits – primitive kernel operations 10-100x faster
than Ultrix

Issues to think about
– Potential for many different Library OSes

– Portability?

– Security?

EECS 443 Advanced Operating Systems

Northwestern University

16

