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NOR T ERN Chip Multi-Processor (CMP)

m Number of cores per chip is rapidly increasing

m As number of cores/threads on a chip increases,
iImportance of parallel programming increases

m Parallel programming is difficult
— Deadlocks

— Priority Inversion
— Lock ordering

m Difficulties lead to a tradeoff between performance
and programming complexity
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NORTHWESTERN .
e Conventional Locks

m Does not scale well

— Locks are conservative
+ Locks are “pessimistic’
<+ Transactions are “optimistic”

— Not robust, non-modular

+ If a thread holding a lock is delayed, all threads waiting for that
lock must also wait

— “Losing” wake ups to sleeping threads
<+ Problem in large systems
m Synchronization is one of the a great source of
bugs in Linux

EECS 443 - Advanced Operating Systems



NORTHWES TERN Transactional Memory (TM)

m Locks can be difficult to use
— Small errors can easily result in deadlock
— Proper implementation can take a lot of planning

m Possible Solution: Transactional Memory
— Simplifies the atomic process (modular)
<+ Programmer denotes atomic sections (e.g. atomic{...})

— Software Implementations (STM)
+ (Currently) slower than locks
+ (Probably) always slower than hardware

— Hardware Implementations (HTM)
+ Fast
<+ Hardware is limited, difficult to implement
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NORTHWES TERN Transactional Memory (TM) cont’d

m Transactions are all or nothing
— Commit — changes take effect

— Abort — all changes rolled back to original state and
(usually) restarted

m Conflicts

— Conflicts are dynamically detected (as they happen)
<+ When a conflict is detected, one transaction continues
+ Other transaction(s) fail and are restarted

— TM is optimistic and assumes threads will usually “play
nicely” and not interfere with each other
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NORTHW ESTERN Transactional Memory (TM) cont’d

m Conflict Detection
— Eager
+ Detect conflicts as they happen
<+ May abort when it could have committed
— Lazy
+ Detect conflicts at time of commit
+ Wastes Computation
m Version Management
— Eager
<+ Immediately puts new values in place
— Lazy

+ (Temporarily) leaves the old values in place, waiting for them to
be committed
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NORTHWESTERN HTM Example

m Two cores (0and 1)
simultaneously enter a critical

region cpuid: 0 cpuid: 1
— If cpuO wins, cpu0 modifies A, 1 1
cpu1 rest.arts 0: xbegin
— If cpu1 wins, cpu0 1: if(cpuid == 0)
successfully reads and no 2: write A
hanges are made to A S: else
C 9 4: read A
m [wo concurrent transactions St ...
6: xend

conflict if a write overlaps with
another transaction’s read or
write
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NOAIEIBST TN TxLinux’s TM Implementation

m [xLinux uses MetaTM
— MetaTM Primitives

<+ xbegin, xend, xretry
<+ Xpush, xpop (save and restore states of transactions)
+ xgettxid, xtest, xcas

— Spinlocks can often be safely converted
<+ spin_lock() -> xbegin
<+ spin_unlock() -> xend

— Nested transactions are flattened
+ If one fails, the whole transaction fails
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NORTHWESTERN .
UNIVERSITY Issues with TM

m A few problems
— lrreversible I/O

— Issues with using both locks and transactions
<+ Sometimes locks are required

— Larger memory requirements can hurt performance due
to support for rollback
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NORTHWESTERN
UNIVERSITY TM & Locks

m Both locks and transactions have advantages/disadvantages

— Locks
+ Legacy code

+ |/O (cannot be done with transactions because |/O is generally
irrevocable)

<+ Other (mis)uses (e.g. runqueue, protecting the page table)

— Transactions
+ Much faster when contention is the exception
+ Problems with larger memory requirements

m Being able to use both is beneficial

— Let the kernel programmer pick which to use
+ TxLinux
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ORI SN cxspinlock (TM and Locks)

m Cooperative Transactional Spinlock

— Critical sections can use locks or transactions
+ Programmer doesn’t have to make a decision

— Default to transaction in most cases

<+ When |/O (or some operation requiring exclusivity) is detected:
— Immediately cancel
— Restart in exclusive mode using locks
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cxspinlock API

cx_optimistic:
Use transactions, restart
on I/0 attempt

cx_exclusive

Acquire a lock, using
contention manager

cx_end

Release a critical
section

void cx_optimistic(lock){
status = xbegin;
if(status==NEED_EXCL) {
xend;
if(gettxid)
xrestart(NEED_EXCL);
else
cx_exclusive(lock);
return;
}
while(!xtest(lock,1));
3

void cx_exclusive(lock){
while(1l) {
while(*lock != 1);
if(xcas(lock, 1, 0))
break;

void cx_end(lock) {
if(xgettxid) {
xend;
} else {
*lock = 1;
}
}

EECS 443 - Advanced Operating Systems




ORI SN Problems with cxspinlocks

m Reintroduces some problems transactions are
meant to eliminate

— Poor locking can lead to deadlock

— Combination of transactions and spinlocks can lead to
deadlock

+ Flat-nesting of transactions makes the system susceptible to
deadlock

m cxspinlocks do require significantly more overhead
for spin-lock related functions
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DL LI Decoupling I/0 from System Calls

m Provide full TM at user level
— Decouple 1/O from system calls

— Buffer effect of system calls initiated by users in
memory without writing to disk
<+ Memory requirements might be too high
<+ Must Kill the process if there are not enough resources

m User retains simpler transactional programming
model
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TM with Contention Management &

NORTHWESTERN Scheduling

UNIVERSITY

m Constantly restarting transactions can waste time

m Contention management and scheduling can help

— 0S_prio policy
+ 1. Highest scheduling value

<+ 2. SizeMatters
— Largest transaction size wins, size resets on restart

+ 3. Timestamp
— Eliminates priority inversion
— Contention manager favors non-TM threads
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NORTHWESTERN Priority and Policy Inversion in TxLinux
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NORTHWESTERN . .
et Limits of Performance
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UNIVERSITY Comments

Reintroducing problem of deadlocks in a new way

Passing ownership of locks explicitly does not seem to be
possible with TM

m [xLinux always uses eager version management
— High contention means more aborts

— More aborts with eager model is more expensive

+ Lazy model simply discards a memo
<+ Maybe this would be better?

m cxspinlocks do seem to help simplify the programming
model (but not the implementation)

m Priority inversion can be eliminated!!!
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