TxLinux: Using and Managing Hardware
Transactional Memory in an Operating System

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E.
Ramadan, A. Bhandari, E. Witchel
SOSP 2007

Presented by Zachary Bischof

NORTHWESTERN
UNIVERSITY

NOR T ERN Chip Multi-Processor (CMP)

m Number of cores per chip is rapidly increasing

m As number of cores/threads on a chip increases,
iImportance of parallel programming increases

m Parallel programming is difficult
— Deadlocks

— Priority Inversion
— Lock ordering

m Difficulties lead to a tradeoff between performance
and programming complexity

EECS 443 - Advanced Operating Systems

NORTHWESTERN .
e Conventional Locks

m Does not scale well

— Locks are conservative
+ Locks are “pessimistic’
<+ Transactions are “optimistic”

— Not robust, non-modular

+ If a thread holding a lock is delayed, all threads waiting for that
lock must also wait

— “Losing” wake ups to sleeping threads
<+ Problem in large systems
m Synchronization is one of the a great source of
bugs in Linux

EECS 443 - Advanced Operating Systems

NORTHWES TERN Transactional Memory (TM)

m Locks can be difficult to use
— Small errors can easily result in deadlock
— Proper implementation can take a lot of planning

m Possible Solution: Transactional Memory
— Simplifies the atomic process (modular)
<+ Programmer denotes atomic sections (e.g. atomic{...})

— Software Implementations (STM)
+ (Currently) slower than locks
+ (Probably) always slower than hardware

— Hardware Implementations (HTM)
+ Fast
<+ Hardware is limited, difficult to implement

EECS 443 - Advanced Operating Systems

NORTHWES TERN Transactional Memory (TM) cont’d

m Transactions are all or nothing
— Commit — changes take effect

— Abort — all changes rolled back to original state and
(usually) restarted

m Conflicts

— Conflicts are dynamically detected (as they happen)
<+ When a conflict is detected, one transaction continues
+ Other transaction(s) fail and are restarted

— TM is optimistic and assumes threads will usually “play
nicely” and not interfere with each other

EECS 443 - Advanced Operating Systems

NORTHW ESTERN Transactional Memory (TM) cont’d

m Conflict Detection
— Eager
+ Detect conflicts as they happen
<+ May abort when it could have committed
— Lazy
+ Detect conflicts at time of commit
+ Wastes Computation
m Version Management
— Eager
<+ Immediately puts new values in place
— Lazy

+ (Temporarily) leaves the old values in place, waiting for them to
be committed

EECS 443 - Advanced Operating Systems

NORTHWESTERN HTM Example

m Two cores (0and 1)
simultaneously enter a critical

region cpuid: 0 cpuid: 1
— If cpuO wins, cpu0 modifies A, 1 1
cpu1 rest.arts 0: xbegin
— If cpu1 wins, cpu0 1: if(cpuid == 0)
successfully reads and no 2: write A
hanges are made to A S: else
C 9 4: read A
m [wo concurrent transactions St ...
6: xend

conflict if a write overlaps with
another transaction’s read or
write

EECS 443 - Advanced Operating Systems

NOAIEIBST TN TxLinux’s TM Implementation

m [xLinux uses MetaTM
— MetaTM Primitives

<+ xbegin, xend, xretry
<+ Xpush, xpop (save and restore states of transactions)
+ xgettxid, xtest, xcas

— Spinlocks can often be safely converted
<+ spin_lock() -> xbegin
<+ spin_unlock() -> xend

— Nested transactions are flattened
+ If one fails, the whole transaction fails

EECS 443 - Advanced Operating Systems

NORTHWESTERN .
UNIVERSITY Issues with TM

m A few problems
— lrreversible I/O

— Issues with using both locks and transactions
<+ Sometimes locks are required

— Larger memory requirements can hurt performance due
to support for rollback

EECS 443 - Advanced Operating Systems

NORTHWESTERN
UNIVERSITY TM & Locks

m Both locks and transactions have advantages/disadvantages

— Locks
+ Legacy code

+ |/O (cannot be done with transactions because |/O is generally
irrevocable)

<+ Other (mis)uses (e.g. runqueue, protecting the page table)

— Transactions
+ Much faster when contention is the exception
+ Problems with larger memory requirements

m Being able to use both is beneficial

— Let the kernel programmer pick which to use
+ TxLinux

EECS 443 - Advanced Operating Systems

ORI SN cxspinlock (TM and Locks)

m Cooperative Transactional Spinlock

— Critical sections can use locks or transactions
+ Programmer doesn’t have to make a decision

— Default to transaction in most cases

<+ When |/O (or some operation requiring exclusivity) is detected:
— Immediately cancel
— Restart in exclusive mode using locks

EECS 443 - Advanced Operating Systems

NORTHWESTERN
UNIVERSITY

cxspinlock API

cx_optimistic:
Use transactions, restart
on I/0 attempt

cx_exclusive

Acquire a lock, using
contention manager

cx_end

Release a critical
section

void cx_optimistic(lock){
status = xbegin;
if(status==NEED_EXCL) {
xend;
if(gettxid)
xrestart(NEED_EXCL);
else
cx_exclusive(lock);
return;
}
while(!xtest(lock,1));
3

void cx_exclusive(lock){
while(1l) {
while(*lock != 1);
if(xcas(lock, 1, 0))
break;

void cx_end(lock) {
if(xgettxid) {
xend;
} else {
*lock = 1;
}
}

EECS 443 - Advanced Operating Systems

ORI SN Problems with cxspinlocks

m Reintroduces some problems transactions are
meant to eliminate

— Poor locking can lead to deadlock

— Combination of transactions and spinlocks can lead to
deadlock

+ Flat-nesting of transactions makes the system susceptible to
deadlock

m cxspinlocks do require significantly more overhead
for spin-lock related functions

EECS 443 - Advanced Operating Systems

DL LI Decoupling I/0 from System Calls

m Provide full TM at user level
— Decouple 1/O from system calls

— Buffer effect of system calls initiated by users in
memory without writing to disk
<+ Memory requirements might be too high
<+ Must Kill the process if there are not enough resources

m User retains simpler transactional programming
model

EECS 443 - Advanced Operating Systems

TM with Contention Management &

NORTHWESTERN Scheduling

UNIVERSITY

m Constantly restarting transactions can waste time

m Contention management and scheduling can help

— 0S_prio policy
+ 1. Highest scheduling value

<+ 2. SizeMatters
— Largest transaction size wins, size resets on restart

+ 3. Timestamp
— Eliminates priority inversion
— Contention manager favors non-TM threads

EECS 443 - Advanced Operating Systems

g
X
@

c
o
)
>

®
c
o

ﬁ
©

o
=
2]
o

c
)
=
>

7p)

UNIVERSITY

NORTHWESTERN

X2-XNUITX |
SX-XNUITX |

Xnui

dpunish

X2-XNUITX |

SX-XNUITX |

XNUIT

config

O aborts
| spins

X2-XNUuITx |

SX-XNUITX |

XNUIT

find

X2-XNUITX |

SX-XNUuITX |

Xnui

mab

X2-XNUITX |

SX-XNUITX |

XNUIT

bonnie++

X9-XNUITX |

SX-XNUITX |

pmake

T
(Q\ o 0 O < (QV o

<~ ~

BuiziuodyouAs Juads awil] [9Wd) JO JU3IIdd

EECS 443 - Advanced Operating Systems

NORTHWESTERN Priority and Policy Inversion in TxLinux

30 -

m16 cpus|
W 32 cpus

25

20

19

10

Percent of restarts under prio inversion

pmake bonnie++ mab find dpunish config

EECS 443 - Advanced Operating Systems

NORTHWESTERN . .
et Limits of Performance

Ratio of Restart to Execution Time

1.30%
1.20%
1.10%
1.00%
0.90%
0.80%
0.70%

| 116 CPUs
I 32 CPUs

0.60%
0.50%
0.40%
0.30%
0.20% I
0.00% . Ry —

EECS 443 - Advanced Operating Systems

NORTHWESTERN
UNIVERSITY Comments

Reintroducing problem of deadlocks in a new way

Passing ownership of locks explicitly does not seem to be
possible with TM

m [xLinux always uses eager version management
— High contention means more aborts

— More aborts with eager model is more expensive

+ Lazy model simply discards a memo
<+ Maybe this would be better?

m cxspinlocks do seem to help simplify the programming
model (but not the implementation)

m Priority inversion can be eliminated!!!

EECS 443 - Advanced Operating Systems

