
TxLinux: Using and Managing Hardware
Transactional Memory in an Operating System

Presented by Zachary Bischof

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E.
Ramadan, A. Bhandari, E. Witchel

 SOSP 2007

Chip Multi-Processor (CMP)

  Number of cores per chip is rapidly increasing
  As number of cores/threads on a chip increases,

importance of parallel programming increases
  Parallel programming is difficult

–  Deadlocks
–  Priority Inversion
–  Lock ordering

  Difficulties lead to a tradeoff between performance
and programming complexity

EECS 443 - Advanced Operating Systems

Conventional Locks

  Does not scale well
–  Locks are conservative

  Locks are “pessimistic”
  Transactions are “optimistic”

–  Not robust, non-modular
  If a thread holding a lock is delayed, all threads waiting for that

lock must also wait

–  “Losing” wake ups to sleeping threads
  Problem in large systems

  Synchronization is one of the a great source of
bugs in Linux

EECS 443 - Advanced Operating Systems

Transactional Memory (TM)

  Locks can be difficult to use
–  Small errors can easily result in deadlock
–  Proper implementation can take a lot of planning

  Possible Solution: Transactional Memory
–  Simplifies the atomic process (modular)

  Programmer denotes atomic sections (e.g. atomic{…})
–  Software Implementations (STM)

  (Currently) slower than locks
  (Probably) always slower than hardware

–  Hardware Implementations (HTM)
  Fast
  Hardware is limited, difficult to implement

EECS 443 - Advanced Operating Systems

Transactional Memory (TM) cont’d

  Transactions are all or nothing
–  Commit – changes take effect
–  Abort – all changes rolled back to original state and

(usually) restarted
  Conflicts

–  Conflicts are dynamically detected (as they happen)
  When a conflict is detected, one transaction continues
  Other transaction(s) fail and are restarted

–  TM is optimistic and assumes threads will usually “play
nicely” and not interfere with each other

EECS 443 - Advanced Operating Systems

Transactional Memory (TM) cont’d

  Conflict Detection
–  Eager

  Detect conflicts as they happen
  May abort when it could have committed

–  Lazy
  Detect conflicts at time of commit
  Wastes Computation

  Version Management
–  Eager

  Immediately puts new values in place
–  Lazy

  (Temporarily) leaves the old values in place, waiting for them to
be committed

EECS 443 - Advanced Operating Systems

HTM Example

cpuid: 0 cpuid: 1

  Two cores (0 and 1)
simultaneously enter a critical
region
–  If cpu0 wins, cpu0 modifies A,

cpu1 restarts
–  If cpu1 wins, cpu0

successfully reads and no
changes are made to A

  Two concurrent transactions
conflict if a write overlaps with
another transaction’s read or
write

0: xbegin
1: if(cpuid == 0)
2: write A
3: else
4: read A
5: …
6: xend

EECS 443 - Advanced Operating Systems

TxLinux’s TM Implementation

  TxLinux uses MetaTM
–  MetaTM Primitives

  xbegin, xend, xretry
  xpush, xpop (save and restore states of transactions)
  xgettxid, xtest, xcas

–  Spinlocks can often be safely converted
  spin_lock() -> xbegin
  spin_unlock() -> xend

–  Nested transactions are flattened
  If one fails, the whole transaction fails

EECS 443 - Advanced Operating Systems

Issues with TM

  A few problems
–  Irreversible I/O
–  Issues with using both locks and transactions

  Sometimes locks are required

–  Larger memory requirements can hurt performance due
to support for rollback

EECS 443 - Advanced Operating Systems

TM & Locks

  Both locks and transactions have advantages/disadvantages
–  Locks

  Legacy code
  I/O (cannot be done with transactions because I/O is generally

irrevocable)
  Other (mis)uses (e.g. runqueue, protecting the page table)

–  Transactions
  Much faster when contention is the exception
  Problems with larger memory requirements

  Being able to use both is beneficial
–  Let the kernel programmer pick which to use

  TxLinux

EECS 443 - Advanced Operating Systems

cxspinlock (TM and Locks)

  Cooperative Transactional Spinlock
–  Critical sections can use locks or transactions

  Programmer doesn’t have to make a decision

–  Default to transaction in most cases
  When I/O (or some operation requiring exclusivity) is detected:

–  Immediately cancel
–  Restart in exclusive mode using locks

EECS 443 - Advanced Operating Systems

cxspinlock API

EECS 443 - Advanced Operating Systems

cx_optimistic:
Use transactions, restart
on I/O attempt

cx_exclusive
Acquire a lock, using
contention manager

cx_end
Release a critical
section

void cx_optimistic(lock){

 status = xbegin;

 if(status==NEED_EXCL){

 xend;

 if(gettxid)

 xrestart(NEED_EXCL);

 else

 cx_exclusive(lock);

 return;

 }

 while(!xtest(lock,1));

}

void cx_exclusive(lock){

 while(1) {

 while(*lock != 1);

 if(xcas(lock, 1, 0))

 break;

 }

}

void cx_end(lock){

 if(xgettxid) {

 xend;

 } else {

 *lock = 1;

 }

}

Problems with cxspinlocks

  Reintroduces some problems transactions are
meant to eliminate
–  Poor locking can lead to deadlock
–  Combination of transactions and spinlocks can lead to

deadlock
  Flat-nesting of transactions makes the system susceptible to

deadlock

  cxspinlocks do require significantly more overhead
for spin-lock related functions

EECS 443 - Advanced Operating Systems

Decoupling I/O from System Calls

  Provide full TM at user level
–  Decouple I/O from system calls
–  Buffer effect of system calls initiated by users in

memory without writing to disk
  Memory requirements might be too high
  Must kill the process if there are not enough resources

  User retains simpler transactional programming
model

EECS 443 - Advanced Operating Systems

TM with Contention Management &
Scheduling

  Constantly restarting transactions can waste time
  Contention management and scheduling can help

–  os_prio policy
  1. Highest scheduling value
  2. SizeMatters

–  Largest transaction size wins, size resets on restart

  3. Timestamp

–  Eliminates priority inversion
–  Contention manager favors non-TM threads

EECS 443 - Advanced Operating Systems

Synchronization Overhead

EECS 443 - Advanced Operating Systems

Priority and Policy Inversion in TxLinux

EECS 443 - Advanced Operating Systems

Limits of Performance

Figure 8: Restart cycles as a percentage of total execution time

for TxLinux-default (SS) with 16 and 32 cpus. The percentage

of restart cycles gives a theoretical upper bound on the perfor-

mance benefit achievable by a scheduling policy that attempts

to minimize restart waste.

4
 c

p
u
s

8
 c

p
u
s

1
6
 c

p
u
s

0.76

0.81

0.86

0.91

0.96

1.01

Normalized Execution Time
Tx!Linux!default

Tx!Linux!sched

Figure 9: Relative execution time for the pipeline micro-

benchmark for TxLinux-sched , TxLinux-default with 4, 8, and

16 cpus.

Figure 8 shows cycles spent restarting contending transactions as a

percentage of total execution time for all benchmarks, using Tx-

Linux-default (unmodified scheduler) and TxLinux-sched kernel

configurations. For most benchmarks, the opportunity to improve

performance by eliminating restarts is limited: on average, if savvy

scheduling were to eliminate all wasted restart cycles, the overall

performance gain for 16 and 32 cpus would be <1% (averaged

across all benchmarks), a statistically insignificant margin, given

the confidence intervals we are able to achieve with our simulation

environment. Empirically, TxLinux-sched execution time is within

1.5% of TxLinux-default for all benchmarks, providing neither a

consistent benefit, nor a consistent detriment to performance.

The TxLinux-sched policy attempts to deschedule threads that

are under significant contention, as indicated by the restart and

backoff profile for the thread. As a result, the ability of the pol-

icy to have a significant positive effect relies heavily on both the

presence of significant contention and the availability of threads at

a similar priority that are able to make progress when scheduled

in place of descheduled threads. While a scheduling policy that re-

duces restarts may have minimal impact where contention is low on

average, as it is in our benchmarks, it can have a more significant

impact in situations where contention is high, reacting to contention

to ameliorate extreme conditions in ways that are not possible with

traditional locks.

To test this hypothesis, we developed a micro-benchmark, called

pipleline, to simulate a multi-threaded application that has signifi-

cantly longer transactions and high contention than the critical re-

gions in TxLinux. The pipeline micro-benchmark consists of mul-

tiple threads (4× the number of processors) each working through

a set of 8 phases: the memory references made by the threads are

mostly distinct to the phase. If all threads are working in the same

phase, contention is very high, and it is unlikely that more than

one thread at a time can make progress, while execution can gener-

ally be overlapped safely for threads in different phases. Figure 9

shows normalized execution time for this micro-benchmark, for the

TxLinux-default and TxLinux-sched configurations. The TxLinux-

sched scheduler is able to improve performance by 8% and 6%

for 4 and 8 cpus respectively, while the benefit under 16 cpus is too

close to the confidence intervals to be significant. The total num-

ber of restarts and total restart cycles wasted are reduced by 20.3%

and 21.5% respectively on average, showing that transaction aware

scheduling can potentially help manage contention related patholo-

gies, while having no negative performance impact under low con-

tention.

8. RELATEDWORK
Transactional memory has its roots in optimistic synchroniza-

tion [21,27] and optimistic database concurrency control [26]. Her-

lihy and Moss [22] gave one of the earliest designs for hardware

transactional memory. Rajwar and Goodman explored specula-

tive [42] or transactional [43] execution of critical sections, spark-

ing a renewal of interest in HTM. Their mechanisms for falling

back on locking primitives when a violation of isolation is detected

dynamically are similar to (though not as general as) the cxspinlock

primitive technique of first executing in a transactional context and

falling back to locking when I/O is detected.

Current work on HTMs has focused on the architectural mecha-

nisms that provide transactional memory [3,9, 18,32,35,55], lang-

uage-level support for HTM [7,14], and transactional resource vir-

tualization [4, 10, 44, 56]. While several proposals for transaction

virtualization involve the OS [4, 9, 10], level of OS involvement

varies, and none of these proposals actually allow the OS itself

to use transactions for synchronization. This paper goes beyond

low-level architecture to address the systems issues that arise when

using HTM in an OS and discusses OS support for HTM.

Operating systems that make heavy use of non-blocking primi-

tives include Synthesis [31] and the Cache Kernel [16]. While non-

blocking techniques can eliminate deadlock and minimize interfer-

ence between scheduling and synchronization they require special-

ization of code and data structures, unlike the HTM techniques used

in TxLinux.

I/O in transactions.

Proposals for I/O in transactions fall into three basic camps: give

transactions an isolation escape hatch, delay the I/O until the trans-

action commits [17, 19], or guarantee that the thread performing

I/O will commit [3,4,18]. All of these strategies have serious draw-

backs.

Many HTM systems allow a transactional escape hatch known as

an open nested transaction [36–38]. An open nested transaction can

read the partial results of the current transaction and any changes it

makes, including I/O operations, are not isolated. The major draw-

back with open nested transactions is that if the enclosing transac-

tion restarts, the effect of the open-nested transaction must be un-

done by code provided by the programmer. The programmer effort

to write and maintain compensating code severely compromises the

utility of open-nested transactions. Efficient hardware implementa-

tions of open nesting introduce correctness conditions that restrict

the transactional programming model. These conditions are subtle

and easy to violate in common programming idioms [23].

EECS 443 - Advanced Operating Systems

Comments

  Reintroducing problem of deadlocks in a new way
  Passing ownership of locks explicitly does not seem to be

possible with TM
  TxLinux always uses eager version management

–  High contention means more aborts
–  More aborts with eager model is more expensive

  Lazy model simply discards a memo
  Maybe this would be better?

  cxspinlocks do seem to help simplify the programming
model (but not the implementation)

  Priority inversion can be eliminated!!!

EECS 443 - Advanced Operating Systems

