
Remus: High Availability via

Asynchronous Virtual Machine

Replication

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, 

Norm Hutchinson, and Andrew Warfield

Department of Computer Science, 

The University of British Columbia

Presenter: Lei Xia

Feb. 25 2009



Outline

 Motivation

 Approach

 Design and Implementation

 Evaluation

 Conclusion and Future work



Motivation

 It’s hard and expensive to design highly 
available system to survive hardware failure

 Using redundant component, special-purpose 
hardware.

 Reengineering software to include complicated 
recovery logic.



Motivation
The goal is to provide high availability 

system, and it’s:

 Generality
 Regardless of applications and hardware

 transparency
Without modification of OS and App.

 Seamless hardware failure recovery
 No externally visible state lost in case of single-host 

failure

 Failure recovery should be fast



Approach

 VM-based whole system replication

 Frequently checkpoint whole Virtual Machine state.

 Protected VM and Backup VM is located in different 

Physical host.

 Speculative execution

 We buffer state to synchronous backup later, and 

continue execution ahead of synchronous point.

 Asynchronous replication

 Buffering output at the primary server allows replication 

to be preformed asynchronously 

 Primary VM execution is overlap state transmission



Speculative execution and 

replication in Remus



Design and Implementation

 Failure Model

 The fail-stop failure of any single host is 

tolerable.

 If both host fail, protected system’s data will be 

left in a crash-consistent state.

 No output will be made externally visible until 

the associated system state has been 

committed.



Design and Implementation

Remus implementation is based on:

 Xen’s support for live migration to provide fine-

grained checkpoints.

 Two host machines is connected over 

redundant gigabit Ethernet connections.

 The virtual machine does not actually 

execute on the backup host until a failure 

occurs.



Remus: Architecture



Pipelined checkpoint
 Checkingpointing runs in high frequency.
Step 1: Pause the running VM and copy any 

changed state into a buffer. 

Step 2: With state changes preserved in a buffer, 
VM is unpaused and speculative execution 
resumes.

Step 3: Buffered state is transmitted to the backup 
host.

Step 4: When complete state has been received, 
acknowledge to the primary.

Step 5: Finally, buffered network output is released. 



Checkpoint Machine State

CPU & memory state

 Checkpointing is implemented above Xen’s 

existing code for performing live migration.

 live migration

 Technique by which a VM is relocated to 

another physical host with slight interruption.



Xen’s live migration

 Stage 1. Memory is copied to the new location 

while the VM continues to run at the old location.

 Stage 2. During migration, writes to memory are 

intercepted, and dirty pages are copied to the new 

location in rounds.

 Stage 3. After a specified number of intervals, the 

guest is suspended and the remaining dirty page 

and CPU state is copied out. (final round, stop-

and-copy)



By hardware MMU, page protection is used 

to trap dirty page.

Actually, Remus implements checkpointing 

as repeated executions of the final round of 

live migration.



Modification to Xen Live Migration

Goal: 1) performance; 2) ensure a 

consistent image is always available at the 

remote location.

Migration Enhancements

Checkpoints support

Asynchronous transmission

Guest modification



Network buffering
Most networks can not provide reliable data 

delivery.

Therefore, network applications use reliable 

protocols to deal with packet loss or duplication.

This simplifies the network buffering 

problem: transmitted packets do not require 

replication.



Network buffering (cont’d)

To ensure packet transition atomic and 

checkpoint consistency:

 Outbound packets generated since the 

previous checkpoint are queued. And 

 Released until that checkpoint has been 

acknowledged by the backup site.

 Inbound packets are delivered to host directly



Disk Buffering
Requirements

 All writes to disk in VM is configured to write 

though.

 Recovery from single host failure

 Preserve crash-consistent when both hosts fail.

On-disk state don’t change until the entire 

checkpoint has been received



Disk Buffering

Maintaining complete mirror of active VM’s 
disk on the backup host

Writes to storage are tracked and checkpointed

All writes to active VM’s disk are write 
througth

 Immediately applied to primary disk

 Asynchronously mirrored to backup’s memory 
buffer

 No on-disk state changed until the entire 
checkpoint has been received



Disk Buffering



Detecting Failure

Use a simple failure detector directly 

integrated in the checkpointing stream

Timeout event represent the host’s failure. 

a timeout of the backup responding to commit 

requests.

 a timeout of new checkpoints being 

transmitted from the primary.



Evaluation

Correctness

 Kernel compiling with X11 client

 25 ms checkpoint

 Every failure point, 1s delay on network, no 

inconsistency in backup disk image



Evaluation



Evaluation (cont’d)



Evaluation (cont’d)



Evaluation (cont’d)



Conclusion

A VM-based software method to provide 

high availability to survive hardware failure, 

with low cost and transparency.



Limitations

Outbound packet latency, lower network 

throughput

Performance


