Remus: High Availability via Asynchronous Virtual Machine Replication

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and Andrew Warfield

> Department of Computer Science, The University of British Columbia

> > Presenter: Lei Xia Feb. 25 2009

Outline

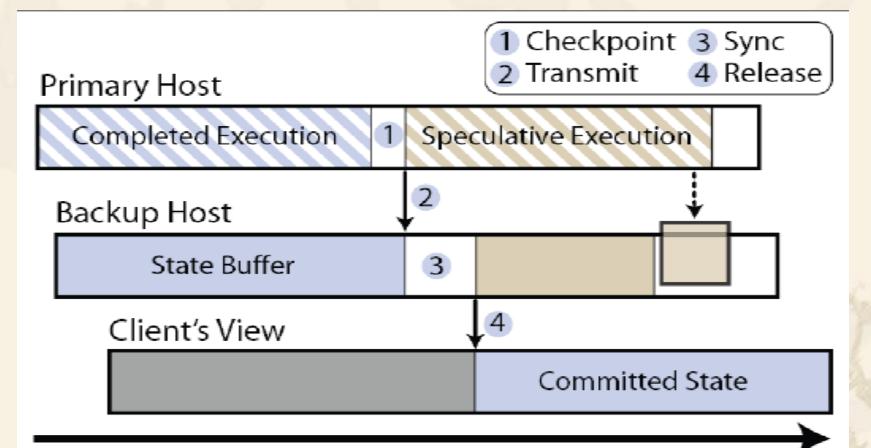
- Motivation
- Approach
- Design and Implementation
- Evaluation
- Conclusion and Future work

Motivation

 It's hard and expensive to design highly available system to survive hardware failure
 Using redundant component, special-purpose hardware.

Reengineering software to include complicated recovery logic.

Motivation


- The goal is to provide high availability system, and it's:
 - **Generality**
 - Regardless of applications and hardware
 - - Without modification of OS and App.
 - - No externally visible state lost in case of single-host failure
 - Failure recovery should be fast

Approach

- VM-based whole system replication

 - Protected VM and Backup VM is located in different Physical host.
- Speculative execution
 - We buffer state to *synchronous* backup later, and continue execution ahead of *synchronous* point.
- Asynchronous replication
 - Buffering output at the primary server allows replication to be preformed *asynchronously*
 - Real Primary VM execution is overlap state transmission

Speculative execution and replication in Remus

Design and Implementation

Failure Model

The fail-stop failure of any single host is tolerable.

If both host fail, protected system's data will be left in a crash-consistent state.

No output will be made externally visible until the associated system state has been committed.

Design and Implementation

- Remus implementation is based on:
 Xen's support for live migration to provide finegrained checkpoints.
 - Two host machines is connected over redundant gigabit Ethernet connections.
- The virtual machine does not actually execute on the backup host until a failure occurs.

Remus: Architecture

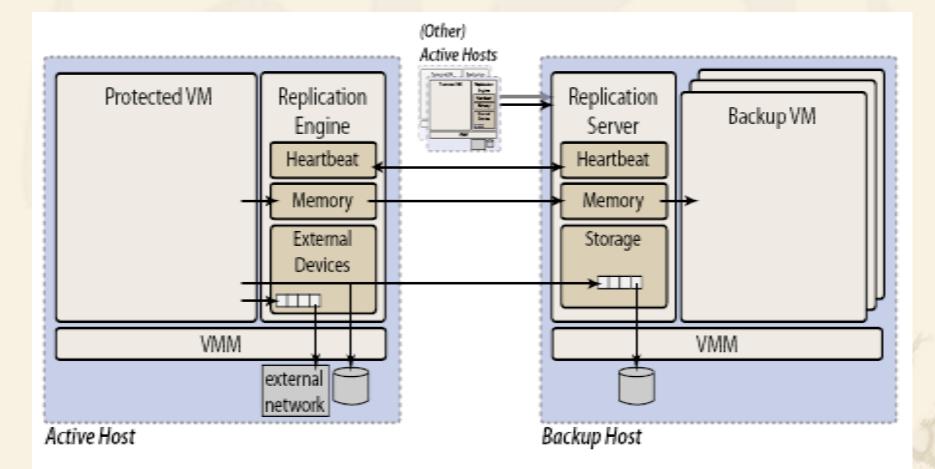


Figure 2: Remus: High-Level Architecture

Pipelined checkpoint

- Checkingpointing runs in high frequency.
 Step 1: Pause the running VM and copy any changed state into a buffer.
 - Step 2: With state changes preserved in a buffer, VM is unpaused and speculative execution resumes.
 - Step 3: Buffered state is transmitted to the backup host.
 - Step 4: When complete state has been received, acknowledge to the primary.
 - Step 5: Finally, buffered network output is released.

Checkpoint Machine State

CPU & memory state

Checkpointing is implemented above Xen's existing code for performing live migration.

Ive migration

Technique by which a VM is relocated to another physical host with slight interruption.

Xen's live migration

- Stage 1. Memory is copied to the new location
 while the VM continues to run at the old location.
- Stage 2. During migration, writes to memory are intercepted, and dirty pages are copied to the new location in rounds.
- Stage 3. After a specified number of intervals, the guest is suspended and the remaining dirty page and CPU state is copied out. (final round, stopand-copy)

By hardware MMU, page protection is used to trap dirty page.
Actually, Remus implements checkpointing as repeated executions of the final round of

live migration.

Modification to Xen Live Migration

- Goal: 1) performance; 2) ensure a consistent image is always available at the remote location.
- Migration Enhancements
- Checkpoints support
- Asynchronous transmission
- Guest modification

Network buffering

- Most networks can not provide reliable data delivery.
 - Therefore, network applications use reliable protocols to deal with packet loss or duplication.
- This simplifies the network buffering problem: transmitted packets do not require replication.

Network buffering (cont'd)

- To ensure packet transition atomic and checkpoint consistency:
 - Outbound packets generated since the previous checkpoint are queued. And
 Released until that checkpoint has been acknowledged by the backup site.
 Inbound packets are delivered to host directly

Disk Buffering

- Requirements
 - All writes to disk in VM is configured to write though.
 - Recovery from single host failure
- On-disk state don't change until the entire checkpoint has been received

Disk Buffering

- Maintaining complete mirror of active VM's disk on the backup host
 - Writes to storage are tracked and checkpointed
- All writes to active VM's disk are write througth
 - Immediately applied to primary disk
 - Asynchronously mirrored to backup's memory buffer

No on-disk state changed until the entire checkpoint has been received

Disk Buffering

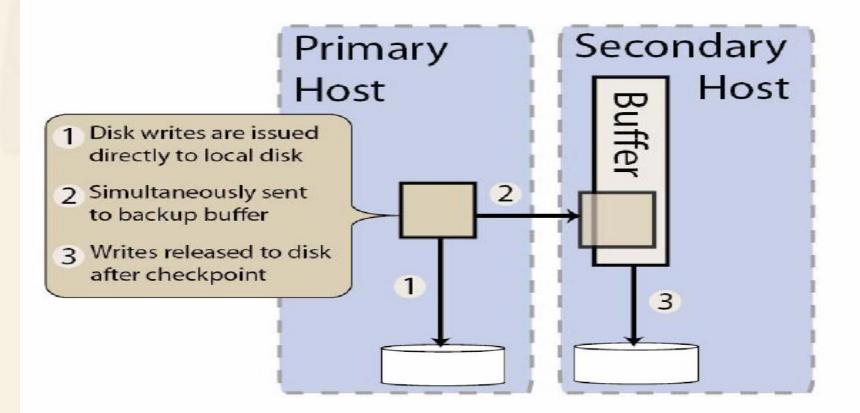


Figure 4: Disk write buffering in Remus.

Detecting Failure

 Use a simple failure detector directly integrated in the checkpointing stream
 Timeout event represent the host's failure.

Real timeout of the backup responding to commit requests.

a timeout of new checkpoints being transmitted from the primary.

Evaluation

Correctness

Kernel compiling with X11 client
 25 ms checkpoint
 Every failure point, 1s delay on network, no inconsistency in backup disk image

Evaluation

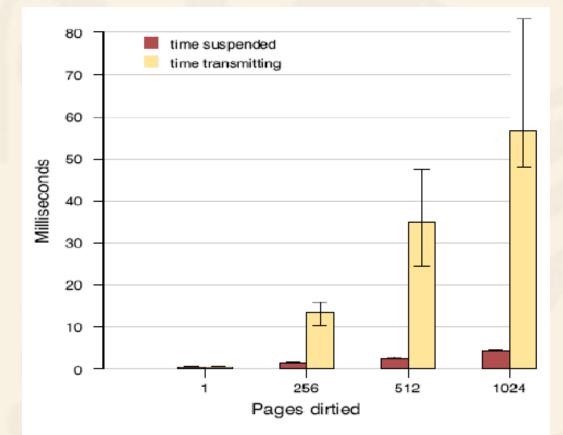


Figure 5: Checkpoint time relative to pages dirtied.

Evaluation (cont'd)

Figure 6: Kernel build time by checkpoint frequency.

Figure 7: SPECweb scores by checkpoint frequency (native score: 305)

Evaluation (cont'd)

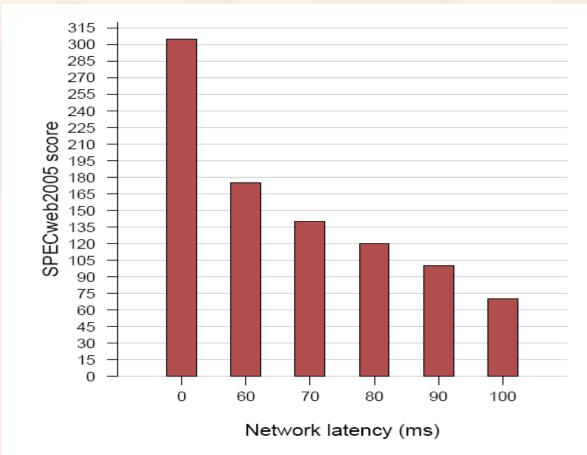


Figure 8: The effect of network delay on SPECweb performance.

Evaluation (cont'd)

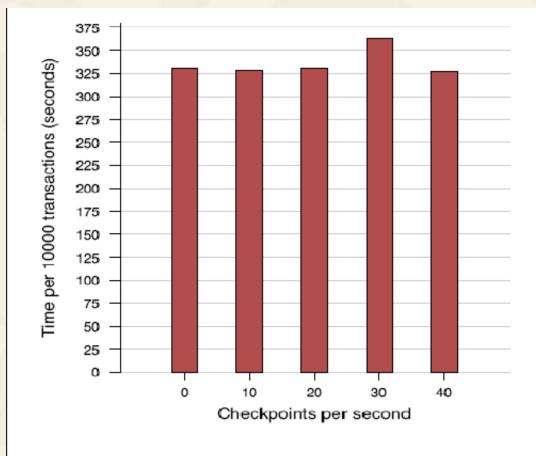


Figure 9: The effect of disk replication of Postmark performance.

Conclusion

A VM-based software method to provide high availability to survive hardware failure, with low cost and transparency.

Limitations

 Outbound packet latency, lower network throughput
 Performance