
Remus: High Availability via

Asynchronous Virtual Machine

Replication

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, 

Norm Hutchinson, and Andrew Warfield

Department of Computer Science, 

The University of British Columbia

Presenter: Lei Xia

Feb. 25 2009



Outline

 Motivation

 Approach

 Design and Implementation

 Evaluation

 Conclusion and Future work



Motivation

 It’s hard and expensive to design highly 
available system to survive hardware failure

 Using redundant component, special-purpose 
hardware.

 Reengineering software to include complicated 
recovery logic.



Motivation
The goal is to provide high availability 

system, and it’s:

 Generality
 Regardless of applications and hardware

 transparency
Without modification of OS and App.

 Seamless hardware failure recovery
 No externally visible state lost in case of single-host 

failure

 Failure recovery should be fast



Approach

 VM-based whole system replication

 Frequently checkpoint whole Virtual Machine state.

 Protected VM and Backup VM is located in different 

Physical host.

 Speculative execution

 We buffer state to synchronous backup later, and 

continue execution ahead of synchronous point.

 Asynchronous replication

 Buffering output at the primary server allows replication 

to be preformed asynchronously 

 Primary VM execution is overlap state transmission



Speculative execution and 

replication in Remus



Design and Implementation

 Failure Model

 The fail-stop failure of any single host is 

tolerable.

 If both host fail, protected system’s data will be 

left in a crash-consistent state.

 No output will be made externally visible until 

the associated system state has been 

committed.



Design and Implementation

Remus implementation is based on:

 Xen’s support for live migration to provide fine-

grained checkpoints.

 Two host machines is connected over 

redundant gigabit Ethernet connections.

 The virtual machine does not actually 

execute on the backup host until a failure 

occurs.



Remus: Architecture



Pipelined checkpoint
 Checkingpointing runs in high frequency.
Step 1: Pause the running VM and copy any 

changed state into a buffer. 

Step 2: With state changes preserved in a buffer, 
VM is unpaused and speculative execution 
resumes.

Step 3: Buffered state is transmitted to the backup 
host.

Step 4: When complete state has been received, 
acknowledge to the primary.

Step 5: Finally, buffered network output is released. 



Checkpoint Machine State

CPU & memory state

 Checkpointing is implemented above Xen’s 

existing code for performing live migration.

 live migration

 Technique by which a VM is relocated to 

another physical host with slight interruption.



Xen’s live migration

 Stage 1. Memory is copied to the new location 

while the VM continues to run at the old location.

 Stage 2. During migration, writes to memory are 

intercepted, and dirty pages are copied to the new 

location in rounds.

 Stage 3. After a specified number of intervals, the 

guest is suspended and the remaining dirty page 

and CPU state is copied out. (final round, stop-

and-copy)



By hardware MMU, page protection is used 

to trap dirty page.

Actually, Remus implements checkpointing 

as repeated executions of the final round of 

live migration.



Modification to Xen Live Migration

Goal: 1) performance; 2) ensure a 

consistent image is always available at the 

remote location.

Migration Enhancements

Checkpoints support

Asynchronous transmission

Guest modification



Network buffering
Most networks can not provide reliable data 

delivery.

Therefore, network applications use reliable 

protocols to deal with packet loss or duplication.

This simplifies the network buffering 

problem: transmitted packets do not require 

replication.



Network buffering (cont’d)

To ensure packet transition atomic and 

checkpoint consistency:

 Outbound packets generated since the 

previous checkpoint are queued. And 

 Released until that checkpoint has been 

acknowledged by the backup site.

 Inbound packets are delivered to host directly



Disk Buffering
Requirements

 All writes to disk in VM is configured to write 

though.

 Recovery from single host failure

 Preserve crash-consistent when both hosts fail.

On-disk state don’t change until the entire 

checkpoint has been received



Disk Buffering

Maintaining complete mirror of active VM’s 
disk on the backup host

Writes to storage are tracked and checkpointed

All writes to active VM’s disk are write 
througth

 Immediately applied to primary disk

 Asynchronously mirrored to backup’s memory 
buffer

 No on-disk state changed until the entire 
checkpoint has been received



Disk Buffering



Detecting Failure

Use a simple failure detector directly 

integrated in the checkpointing stream

Timeout event represent the host’s failure. 

a timeout of the backup responding to commit 

requests.

 a timeout of new checkpoints being 

transmitted from the primary.



Evaluation

Correctness

 Kernel compiling with X11 client

 25 ms checkpoint

 Every failure point, 1s delay on network, no 

inconsistency in backup disk image



Evaluation



Evaluation (cont’d)



Evaluation (cont’d)



Evaluation (cont’d)



Conclusion

A VM-based software method to provide 

high availability to survive hardware failure, 

with low cost and transparency.



Limitations

Outbound packet latency, lower network 

throughput

Performance


