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Motivation

+ I[t's hard and expensive to design highly
avallable system to survive hardware failure

= Using redundant component, special-purpose
hardware.

= Reengineering software to include complicated
recovery logic.



Motivation

<« The goal is to provide high availability
system, and it’s:
= Generality
< Regardless of applications and hardware
& transparency
< Without modification of OS and App.

= Seamless hardware failure recovery

< No externally visible state lost in case of single-host
failure

< Failure recovery should be fast



Approach

<+ VM-based whole system replication
«® Frequently checkpoint whole Virtual Machine state.

= Protected VM and Backup VM is located in different
Physical host.

< Speculative execution

= We buffer state to synchronous backup later, and
continue execution ahead of synchronous point.

<« Asynchronous replication

« Buffering output at the primary server allows replication
to be preformed asynchronously

= Primary VM execution Is overlap state transmission
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Design and Implementation

Faillure Model

= The fail-stop failure of any single host is
tolerable.

= If both host fail, protected system’s data will be
left in a crash-consistent state.

= No output will be made externally visible until
the associated system state has been
committed.



Design and Implementation

+ Remus implementation is based on:

= Xen's support for live migration to provide fine-
grained checkpoints.

= Two host machines is connected over
redundant gigabit Ethernet connections.
« The virtual machine does not actually
execute on the backup host until a failure
OCCUrs.



Remus: Architecture
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Figure 2: Remus: High-Level Architecture



Pipelined checkpoint

« Checkingpointing runs in high frequency.

«=Step 1: Pause the running VM and copy any
changed state into a buffer.

«=Step 2: With state changes preserved in a buffer,
VM is unpaused and speculative execution
resumes.

«=Step 3: Buffered state is transmitted to the backup
host.

«=Step 4. When complete state has been received,
acknowledge to the primary.

«=Step 5: Finally, buffered network output is released.



Checkpoint Machine State

<+ CPU & memory state

« Checkpointing is implemented above Xen's
existing code for performing live migration.

« live migration

« Technique by which a VM Is relocated to
another physical host with slight interruption.



Xen's live migration

« Stage 1. Memory Is copied to the new location
while the VM continues to run at the old location.

« Stage 2. During migration, writes to memory are
Intercepted, and dirty pages are copied to the new
location in rounds.

« Stage 3. After a specified number of intervals, the
guest Is suspended and the remaining dirty page
and CPU state Is copied out. (final round, stop-
and-copy)



<+ By hardware MMU, page protection Is used
to trap dirty page.

« Actually, Remus implements checkpointing

as repeated executions of the final round of
live migration.



Modification to Xen Live Migration

« Goal: 1) performance; 2) ensure a
consistent image Is always available at the
remote location.

<« Migration Enhancements

« Checkpoints support

« Asynchronous transmission
« Guest modification



Network buffering

<« Most networks can not provide reliable data
delivery.
= Therefore, network applications use reliable
protocols to deal with packet loss or duplication.
< This simplifies the network buffering
problem: transmitted packets do not require
replication.



Network buffering (cont'd)

<« To ensure packet transition atomic and
checkpoint consistency:

« Outbound packets generated since the
previous checkpoint are queued. And

= Released until that checkpoint has been
acknowledged by the backup site.

= Inbound packets are delivered to host directly



Disk Buffering

+ Requirements

= All writes to disk in VM is configured to write
though.

= Recovery from single host failure
= Preserve crash-consistent when both hosts falil.

+ On-disk state don’t change until the entire
checkpoint has been received




Disk Buffering

+ Maintaining complete mirror of active VM's
disk on the backup host

«=Writes to storage are tracked and checkpointed
« All writes to active VM's disk are write

througth

= Immediately applied to primary disk

& Asynchronously mirrored to backup’s memory
buffer

« No on-disk state changed until the entire
checkpoint has been received
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Detecting Failure

« Use a simple failure detector directly
Integrated In the checkpointing stream

<« Timeout event represent the host’s failure.

«a timeout of the backup responding to commit
requests.

= a timeout of new checkpoints being
transmitted from the primary.



Evaluation

< Correctness
= Kernel compiling with X11 client
= 25 ms checkpoint

= Every failure point, 1s delay on network, no
Inconsistency In backup disk image
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Evaluation (cont'd
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Evaluation (cont’'d)
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Figure 8: The effect of network delay on SPECweb per-
formance.



Evaluation (cont’'d)
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Conclusion

« A VM-based software method to provide
high availabllity to survive hardware failure,
with low cost and transparency.



Limitations

« Outbound packet latency, lower network
throughput

<+ Performance



