Remus: High Availabllity via
Asynchronous Virtual Machine
Replication

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley,
Norm Hutchinson, and Andrew Warfield

Department of Computer Science,
The University of British Columbia

Presenter: Lel Xia
Feb. 25 2009

Outline

Motivation

Approach

Design and Implementation
Evaluation

Conclusion and Future work

Motivation

+ I[t's hard and expensive to design highly
avallable system to survive hardware failure

= Using redundant component, special-purpose
hardware.

= Reengineering software to include complicated
recovery logic.

Motivation

<« The goal is to provide high availability
system, and it’s:
= Generality
< Regardless of applications and hardware
& transparency
< Without modification of OS and App.

= Seamless hardware failure recovery

< No externally visible state lost in case of single-host
failure

< Failure recovery should be fast

Approach

<+ VM-based whole system replication
«® Frequently checkpoint whole Virtual Machine state.

= Protected VM and Backup VM is located in different
Physical host.

< Speculative execution

= We buffer state to synchronous backup later, and
continue execution ahead of synchronous point.

<« Asynchronous replication

« Buffering output at the primary server allows replication
to be preformed asynchronously

= Primary VM execution Is overlap state transmission

Speculative execution and
replication iIn Remus

Primary Host

kz Transmit

€ Checkpoint 3 Sync J
e

4 Releas

Completed Execution 1

Speculative Execution

Backup Host

b

2

v

‘ State Buffer

3

]

Client's View

Committed State

L)

Design and Implementation

Faillure Model

= The fail-stop failure of any single host is
tolerable.

= If both host fail, protected system’s data will be
left in a crash-consistent state.

= No output will be made externally visible until
the associated system state has been
committed.

Design and Implementation

+ Remus implementation is based on:

= Xen's support for live migration to provide fine-
grained checkpoints.

= Two host machines is connected over
redundant gigabit Ethernet connections.
« The virtual machine does not actually
execute on the backup host until a failure
OCCUrs.

Remus: Architecture

(Ot her]
Active Hosls
Protected Vi Replication (% ——l Replication (% :
Engine = Corver Backup Vi
Heartbeat | — Ll Heartbeat
’l’ Memory »r Memory
Extemal [Storage
Drevices
1 IR
' " 5
Ilu'l|I'|'1 |I'|'1 A .||II |I'|'1 fl."l
external ﬁ
natwork
Active Host Backup Host

Figure 2: Remus: High-Level Architecture

Pipelined checkpoint

« Checkingpointing runs in high frequency.

«=Step 1: Pause the running VM and copy any
changed state into a buffer.

«=Step 2: With state changes preserved in a buffer,
VM is unpaused and speculative execution
resumes.

«=Step 3: Buffered state is transmitted to the backup
host.

«=Step 4. When complete state has been received,
acknowledge to the primary.

«=Step 5: Finally, buffered network output is released.

Checkpoint Machine State

<+ CPU & memory state

« Checkpointing is implemented above Xen's
existing code for performing live migration.

« live migration

« Technique by which a VM Is relocated to
another physical host with slight interruption.

Xen's live migration

« Stage 1. Memory Is copied to the new location
while the VM continues to run at the old location.

« Stage 2. During migration, writes to memory are
Intercepted, and dirty pages are copied to the new
location in rounds.

« Stage 3. After a specified number of intervals, the
guest Is suspended and the remaining dirty page
and CPU state Is copied out. (final round, stop-
and-copy)

<+ By hardware MMU, page protection Is used
to trap dirty page.

« Actually, Remus implements checkpointing

as repeated executions of the final round of
live migration.

Modification to Xen Live Migration

« Goal: 1) performance; 2) ensure a
consistent image Is always available at the
remote location.

<« Migration Enhancements

« Checkpoints support

« Asynchronous transmission
« Guest modification

Network buffering

<« Most networks can not provide reliable data
delivery.
= Therefore, network applications use reliable
protocols to deal with packet loss or duplication.
< This simplifies the network buffering
problem: transmitted packets do not require
replication.

Network buffering (cont'd)

<« To ensure packet transition atomic and
checkpoint consistency:

« Outbound packets generated since the
previous checkpoint are queued. And

= Released until that checkpoint has been
acknowledged by the backup site.

= Inbound packets are delivered to host directly

Disk Buffering

+ Requirements

= All writes to disk in VM is configured to write
though.

= Recovery from single host failure
= Preserve crash-consistent when both hosts falil.

+ On-disk state don’t change until the entire
checkpoint has been received

Disk Buffering

+ Maintaining complete mirror of active VM's
disk on the backup host

«=Writes to storage are tracked and checkpointed
« All writes to active VM's disk are write

througth

= Immediately applied to primary disk

& Asynchronously mirrored to backup’s memory
buffer

« No on-disk state changed until the entire
checkpoint has been received

Disk Buffering

Primary Secondary
Host Host

-

(= E
1 Disk writes are issued
directly to local disk

2 Simultaneously sent

to backup buffer

3 Writes released to disk

after checkpoint

\

A

Figure 4: Disk write buffering in Remus.

Detecting Failure

« Use a simple failure detector directly
Integrated In the checkpointing stream

<« Timeout event represent the host’s failure.

«a timeout of the backup responding to commit
requests.

= a timeout of new checkpoints being
transmitted from the primary.

Evaluation

< Correctness
= Kernel compiling with X11 client
= 25 ms checkpoint

= Every failure point, 1s delay on network, no
Inconsistency In backup disk image

80

70

&0

50

Milliseconds
5

30

20

10

Evaluation

M time suspended
timme transmitting

—_—

255
Pages dirtied

=

512

il

1024

Figure 5: Checkpoint time relative to pages dirtied.

Evaluation (cont'd

B0 190 :
E25 — 180 — B with netbuf no netouf
B0
CLc 170
550 _
o 150
& 500 - 150 —
o 475 - o 140
450 by _|
O 425 - § 130
B 400 — 120 —
v 53 g 110
= 325 E 100 —
7 300 % oag —
R = 80
0 250 — 5
T 225 L Tl
E 200 — o 6O —
@ 175 uw
X150 — Sl
125 — 40 —
100
75 30
50 — 200 —
Eg] 10
[:. —
t iy 20 a0 47
o 10 a0 0 40
Checkpoinis per second Checkpoints per second
Figure 6; Kemmel build time by checkpont Irequency. Figure 7: SPECweb scores by checkpoint [requency (na-

tive score: 303

Evaluation (cont’'d)

315 -
300 —
285 —
270 —H
255 —
240 —
225 —
210 —
195 —
180 —

165 —
150 —
135 —
120 —
105 —
90 —
75
60 —
45 —
30 —
15 —
[} —
8] 60 7O a0 90 100

Network latency (ms)

SPECweb2005 score

Figure 8: The effect of network delay on SPECweb per-
formance.

Evaluation (cont’'d)

I73
350 —

325 —
a0 —
273 —
950 —
205 —
o000 —
173 —
150 —
125 —
100 —
T3 —
V=
oE —
o —
0 10 20 30 40

Checkpoints per second

Time per 10000 transactions (seconds)

Figure 9: The effect of disk replication of Postmark per-
[ormance.,

Conclusion

« A VM-based software method to provide
high availabllity to survive hardware failure,
with low cost and transparency.

Limitations

« Outbound packet latency, lower network
throughput

<+ Performance

