
Rethink the Sync
Edmund B. Nightingale, Kaushik Veeraraghavan,

Peter M. Chen, and Jason Flinn

Presented by Yinzhi Cao

Introduction

 Previous File System Approach

 Synchronous File System

 Durable

 But Slow

 Asynchronous File System

 Fast

 But not Safe

Introduction Continued

 New Approach: External Synchronous

System

 Difference with Synchronous System

 Application-centric View vs User-centric View

System Design(1)

System Design(2)

 Definition of Equivalence of an externally

synchronous system and a synchronous one

 The values of the external outputs are the same

 The outputs occur in the same causal order

Happened Before Relation(From

Wiki)

 The happened-before relation is a means of

ordering events based on the causal

relationship of two events in asynchronous

distributed systems.

http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Partially_ordered_set
http://en.wikipedia.org/wiki/Causal_relationships
http://en.wikipedia.org/wiki/Causal_relationships
http://en.wikipedia.org/wiki/Asynchronous_communication
http://en.wikipedia.org/wiki/Distributed_systems

System Design(3)

 Improving performance

 Modifications are group committed.

 Buffering screen output

 System Requirement

 Track causal relationship between file system

modification and external output

System Design(4)

 Tradeoff between committing and delay

committing

 Immediately Low Throughput

 Delaying High Latency

 Output-Triggered Commits

System Design(5)

 Limitation

 Complicate Application-specific Recovery

 User cannot see temporal expectations about

modifications

 Modifications to data in two different file

systems may cause problems

Implementation(1)

 Speculator

 Predict results of remote operation and let

system run with predicted results

 If different from predicted, roll back.

 From speculation to synchronization

 No roll back and checkpoint

 Dependency Tracking and Buffering

Implementation(2)

 Output-triggered commits

 5-seconds commits

Implementation(3)

 Shared Memory

 It is very complicated to deduct when writer is

writing

 This system just block all readers when one

writer exists.

Evaluation(1)

 Durable

Evaluation(2)

 The PostMark

benchmark

Evaluation(3)

 The Apache

build

benchmark

Evaluation(4)

 The MySQL benchmark

Evaluation(5)

 The SPECweb99

benchmark

Evaluation(6)

 Benefit of output-triggered commits

Summary

 Strongest Point

 Change of Point of View: From Application-

Centric to User-Centric

 Weakest Point

 They use other’s code which may bring into

redundancy.

