
Rethink the Sync
Edmund B. Nightingale, Kaushik Veeraraghavan,

Peter M. Chen, and Jason Flinn

Presented by Yinzhi Cao

Introduction

 Previous File System Approach

 Synchronous File System

 Durable

 But Slow

 Asynchronous File System

 Fast

 But not Safe

Introduction Continued

 New Approach: External Synchronous

System

 Difference with Synchronous System

 Application-centric View vs User-centric View

System Design(1)

System Design(2)

 Definition of Equivalence of an externally

synchronous system and a synchronous one

 The values of the external outputs are the same

 The outputs occur in the same causal order

Happened Before Relation(From

Wiki)

 The happened-before relation is a means of

ordering events based on the causal

relationship of two events in asynchronous

distributed systems.

http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Partially_ordered_set
http://en.wikipedia.org/wiki/Causal_relationships
http://en.wikipedia.org/wiki/Causal_relationships
http://en.wikipedia.org/wiki/Asynchronous_communication
http://en.wikipedia.org/wiki/Distributed_systems

System Design(3)

 Improving performance

 Modifications are group committed.

 Buffering screen output

 System Requirement

 Track causal relationship between file system

modification and external output

System Design(4)

 Tradeoff between committing and delay

committing

 Immediately Low Throughput

 Delaying High Latency

 Output-Triggered Commits

System Design(5)

 Limitation

 Complicate Application-specific Recovery

 User cannot see temporal expectations about

modifications

 Modifications to data in two different file

systems may cause problems

Implementation(1)

 Speculator

 Predict results of remote operation and let

system run with predicted results

 If different from predicted, roll back.

 From speculation to synchronization

 No roll back and checkpoint

 Dependency Tracking and Buffering

Implementation(2)

 Output-triggered commits

 5-seconds commits

Implementation(3)

 Shared Memory

 It is very complicated to deduct when writer is

writing

 This system just block all readers when one

writer exists.

Evaluation(1)

 Durable

Evaluation(2)

 The PostMark

benchmark

Evaluation(3)

 The Apache

build

benchmark

Evaluation(4)

 The MySQL benchmark

Evaluation(5)

 The SPECweb99

benchmark

Evaluation(6)

 Benefit of output-triggered commits

Summary

 Strongest Point

 Change of Point of View: From Application-

Centric to User-Centric

 Weakest Point

 They use other’s code which may bring into

redundancy.

