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Motivation

 To build a distributed file system 
above a cluster of cheap machines.

 The system guarantees:
h Performance
 Scalability
 Reliability
 Availability



Key 
observations/assumptions

 Component failures are normal
 Large files are common case
 Most files are mutated by appending 

new data
 Co-designing the applications and 

the file system API benefits the 
overall system



Key observations/assumptions, 
cont’d

 The workloads primarily consist of 
two kinds of reads: large streaming 
reads and small random reads

 High sustained bandwidth is more 
important than low latency



Design overview

 Interface
 Files are organized hierarchically in 

directories and identified by pathnames
 Support operations of create, delete, 

open, close, read, write, snapshot and 
record append



Design overview, cont’d

 Architecture
 A single master to make control 

decisions
 Multiple chunkservers to store data
 Multiple clients to access the system
 Files are divided into fixed-size chunks
 Each chunk is replicated on multiple 

chunkservers (reliability/availability)



Design overview, cont’d



Design overview, cont’d

 An illustrative example



Design overview, cont’d

 Other considerations:
 64MB chunk size ( large files are 

common)
 Metadata:

 File and chunk namespace
 The file-to-chunk mapping
 The locations of each chunk’s replicas

 Operation log



Design overview, cont’d

 Consistency model



System interactions

 Leases and Mutation Order



System interactions, cont’d

 Control flow
 Client-master, then from the client to 

the primary and then to all secondaries
 Data flow

 Linear along a carefully picked chain of 
chunkservers in a pipelined fashion



System interactoin, cont’d

 Atomic record appends
 Guarantees that the data is written at 

least once as an atomic unit
 Snapshot

 First revoke all leases on the chunks 
about to snapshot

 Duplicate metadata
 Copy-on-write technique



Master operation

 Namespace management and 
locking
 Each node in the namespace tree has an 

associated read-write lock
 Each master operation on namespace 

acqures a set of locks before it runs
 Locks are acquired in order
 Example: /d1/d2/…/dn/leaf

/d1, /d1/d2, …, /d1/d2/…/dn, read lock
/d1/d2/…/dn/leaf, write lock



Master operation, cont’d

 Replica creation
 Place replica on chunkservers with low 

disk space utilization
 Limit the number of recent creation on 

each chunkserver
 Spread replicas of a chunk across racks



Master operation, cont’d

 Re-replication
 How far is it from its replication goal
 Is it a chunk for live file
 Is it blocking client progress

 Rebalancing



Master operation, cont’d

 Garbage collection
 The master renames a deleted file with 

a hidden name with timestamp
 The master deletes metadata after 

predefined time interval
 The chunkservers delete orphaned 

chunks
 Simple, reliable and do not generate 

additional network traffic



Master operation, cont’d

 Stale replica detection
 Use chunk version number
 The chunk replica with less advanced 

version number is stale
 The higher version number is considered 

up-to-date



Fault tolerance and 
diagnosis

 High availability
 Both master and chunkservers can do 

fast recovery
 Both master and chunks have multiple 

replicas
 Shadow masters provide read-only 

access to the file system when the 
primary master is down



Fault tolerance and diagnosis, 
cont’d

 Data integrity
 Each chunkserver use checksumming to 

detect corruption of stored data. 
 Diagnostic tools

 Use logs



Experimental results

 Reads
 Clients simultaneously 

reads a random 4MB 
region from a 320 GB 
file set

 Reach up to 80% of 
theoretical limit



Experimental results, cont’d

 Writes
 Clients simultaneously 

write to distinct files. 
 Each client writes 1GB 

data to a new file in a 
series of 1 MB writes

 Reach up to half of 
theoretical limit



Experimental results, cont’d

 Record appends
 Clients append 

simultaneously to a 
single file.

 Performance starts at 6 
MB/s and drops to 4.8 
MB/s.



Experimental results, cont’d

 Real world clusters
 Cluster A for research and development
 Cluster B for production data processing



Experimental results, cont’d

Master load
Not a problem



Experimental results, cont’d

 Recovery time
 A single chunkserver restores in 23.2 

minutes
 When 2 chunkservers are killed, chunks 

restore to at least 2x replications in 2 
minutes



Experimental results, cont’d

 Chunkserver workloads



Experimental results, cont’d

 Operation on large files should be 
optimized



Experimental results, cont’d

 Master workload



Conclusions
h One sentence summary

h The authors propose a mechanism to build a 
distributed file system above a cluster of cheap 
machines, and specially tune the design to the 
actually applications running in google

 Major flaws
 The system do not guarantee performance on 

applications other than those running in google
 Diagnostic tools are kind of weak. When the 

system scales, it will be prohibitively expensive 
to diagnose by looking into logs



Any questions?



The end

Thank you!
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