
The Google File System

Sanjay Ghemawat, howard
Gobioff, and Shun-Tak Leung

Presented by Hongyu
Gao
Northwestern
University

Outline

h Motivation
 Key observations/assumptions
 Design overview
 System interactions
 Master operation
 Fault tolerance and diagnosis
 Experimental results
 Conclusions

Motivation

 To build a distributed file system
above a cluster of cheap machines.

 The system guarantees:
h Performance
 Scalability
 Reliability
 Availability

Key
observations/assumptions

 Component failures are normal
 Large files are common case
 Most files are mutated by appending

new data
 Co-designing the applications and

the file system API benefits the
overall system

Key observations/assumptions,
cont’d

 The workloads primarily consist of
two kinds of reads: large streaming
reads and small random reads

 High sustained bandwidth is more
important than low latency

Design overview

 Interface
 Files are organized hierarchically in

directories and identified by pathnames
 Support operations of create, delete,

open, close, read, write, snapshot and
record append

Design overview, cont’d

 Architecture
 A single master to make control

decisions
 Multiple chunkservers to store data
 Multiple clients to access the system
 Files are divided into fixed-size chunks
 Each chunk is replicated on multiple

chunkservers (reliability/availability)

Design overview, cont’d

Design overview, cont’d

 An illustrative example

Design overview, cont’d

 Other considerations:
 64MB chunk size (large files are

common)
 Metadata:

 File and chunk namespace
 The file-to-chunk mapping
 The locations of each chunk’s replicas

 Operation log

Design overview, cont’d

 Consistency model

System interactions

 Leases and Mutation Order

System interactions, cont’d

 Control flow
 Client-master, then from the client to

the primary and then to all secondaries
 Data flow

 Linear along a carefully picked chain of
chunkservers in a pipelined fashion

System interactoin, cont’d

 Atomic record appends
 Guarantees that the data is written at

least once as an atomic unit
 Snapshot

 First revoke all leases on the chunks
about to snapshot

 Duplicate metadata
 Copy-on-write technique

Master operation

 Namespace management and
locking
 Each node in the namespace tree has an

associated read-write lock
 Each master operation on namespace

acqures a set of locks before it runs
 Locks are acquired in order
 Example: /d1/d2/…/dn/leaf

/d1, /d1/d2, …, /d1/d2/…/dn, read lock
/d1/d2/…/dn/leaf, write lock

Master operation, cont’d

 Replica creation
 Place replica on chunkservers with low

disk space utilization
 Limit the number of recent creation on

each chunkserver
 Spread replicas of a chunk across racks

Master operation, cont’d

 Re-replication
 How far is it from its replication goal
 Is it a chunk for live file
 Is it blocking client progress

 Rebalancing

Master operation, cont’d

 Garbage collection
 The master renames a deleted file with

a hidden name with timestamp
 The master deletes metadata after

predefined time interval
 The chunkservers delete orphaned

chunks
 Simple, reliable and do not generate

additional network traffic

Master operation, cont’d

 Stale replica detection
 Use chunk version number
 The chunk replica with less advanced

version number is stale
 The higher version number is considered

up-to-date

Fault tolerance and
diagnosis

 High availability
 Both master and chunkservers can do

fast recovery
 Both master and chunks have multiple

replicas
 Shadow masters provide read-only

access to the file system when the
primary master is down

Fault tolerance and diagnosis,
cont’d

 Data integrity
 Each chunkserver use checksumming to

detect corruption of stored data.
 Diagnostic tools

 Use logs

Experimental results

 Reads
 Clients simultaneously

reads a random 4MB
region from a 320 GB
file set

 Reach up to 80% of
theoretical limit

Experimental results, cont’d

 Writes
 Clients simultaneously

write to distinct files.
 Each client writes 1GB

data to a new file in a
series of 1 MB writes

 Reach up to half of
theoretical limit

Experimental results, cont’d

 Record appends
 Clients append

simultaneously to a
single file.

 Performance starts at 6
MB/s and drops to 4.8
MB/s.

Experimental results, cont’d

 Real world clusters
 Cluster A for research and development
 Cluster B for production data processing

Experimental results, cont’d

Master load
Not a problem

Experimental results, cont’d

 Recovery time
 A single chunkserver restores in 23.2

minutes
 When 2 chunkservers are killed, chunks

restore to at least 2x replications in 2
minutes

Experimental results, cont’d

 Chunkserver workloads

Experimental results, cont’d

 Operation on large files should be
optimized

Experimental results, cont’d

 Master workload

Conclusions
h One sentence summary

h The authors propose a mechanism to build a
distributed file system above a cluster of cheap
machines, and specially tune the design to the
actually applications running in google

 Major flaws
 The system do not guarantee performance on

applications other than those running in google
 Diagnostic tools are kind of weak. When the

system scales, it will be prohibitively expensive
to diagnose by looking into logs

Any questions?

The end

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

