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Motivation

“ To build a distributed file system
above a cluster of cheap machines.

" The system guarantees:
" Performance

* Scalability
- Reliability
~ Avallability




Key
observations/assumptions

- Component failures are normal
* Large files are common case

- Most files are mutated by appending
new data

- Co-designing the applications and

the file system API benefits the

overall system | (=




Key observations/assumptions,
cont’d

* The workloads primarily consist of
two kinds of reads: large streaming
reads and small random reads

* High sustained bandwidth is more
important than low latency




Design overview

" Interface

" Files are organized hierarchically in
directories and identified by pathnames

* Support operations of create, delete,
open, close, read, write, snapshot and
record append




Design overview, cont’'d

* Architecture

~ A single master to make control
decisions

* Multiple chunkservers to store data
* Multiple clients to access the system
" Files are divided into fixed-size chunks

- Each chunk is replicated on multiple

chunkservers (reliability/availability) | ‘:3
By,




Design overview, cont’'d
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Design overview, cont’'d

- An Iillustrative example
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Design overview, cont’'d

- Other considerations:

- 64MB chunk size ( large files are
common)
- Metadata:
* File and chunk namespace
* The file-to-chunk mapping
* The locations of each chunk’s replicas

" Operation log




Design overview, cont’'d

Consistency model

Write Record Append
Serial defined defined
SUCCESSE interspersed with
[ Concurrent | conststent triconsistent
SUCCesses but undefined
"~ Faillure inconsistent




System interactions

Leases and Mutation Order
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System interactions, cont'd

* Control flow

- Client-master, then from the client to
the primary and then to all secondaries

* Data flow

 Linear along a carefully picked chain of
chunkservers in a pipelined fashion




System interactoin, cont’'d

- Atomic record appends

* Guarantees that the data is written at
least once as an atomic unit

“ Snapshot
" First revoke all leases on the chunks
about to snapshot
" Duplicate metadata o

- Copy-on-write technique




Master operation

" Namespace management and
locking

" Each node in the namespace tree has an
associated read-write lock

- Each master operation on namespace
acqures a set of locks before it runs

- Locks are acquired in order
" Example: /d1/d2/.../dn/leaf
/d1, /d1/d2, ..., /d1/d2/.../dn, read 5&)2




Master operation, cont’'d

"~ Replica creation

 Place replica on chunkservers with low
disk space utilization

“ Limit the number of recent creation on
each chunkserver

- Spread replicas of a chunk across racks




Master operation, cont’'d

* Re-replication

" How far is it from its replication goal
s it a chunk for live file

s it blocking client progress

" Rebalancing

o,
o
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Master operation, cont’'d

- Garbage collection

 The master renames a deleted file with
a hidden name with timestamp

 The master deletes metadata after
predefined time interval

- The chunkservers delete orphaned
chunks X

- Simple, reliable and do not generate <4
additional network traffic .




Master operation, cont’'d

- Stale replica detection
- Use chunk version number

“ The chunk replica with less advanced
version number is stale

* The higher version number is considered
up-to-date




Hi

Fault tolerance and
diagnosis

gh availability

Both master and chunkservers can do
fast recovery

- Both master and chunks have multiple

replicas

- Shadow masters provide read-only

access to the file system when the
primary master is down . 2




Fault tolerance and diagnosis,
cont’d

Data integrity

- Each chunkserver use checksumming to
detect corruption of stored data.

Diagnostic tools
- Use logs
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o
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Experimental results

- Reads

- Clients simultaneously
reads a random 4MB
region from a 320 GI P

file Set ) Hm_: /Nclwmrk limit
 Reach up to 80% of = B
theoretical limit 3 %0-
.[}- e
U

Mumber of clients N
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Experimental results, cont’'d

- Writes

- Clients simultaneously
write to distinct files.

* Each client writes 1GB
data to a new file in a

. . ;”’f etwork limit
series of 1 MB writes ~ _“| /T
s 1/
* Reach up to half of i° / __
theoretical limit Bl ) {
/ goregate write rate "‘}
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Experimental results, cont’'d

" Record appends

- Clients append
simultaneously to a
single file.

* Performance starts a

MB/S and drops to 4 : % H}—_ Network limit
=
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Experimental results, cont’'d

Real world clusters
" Cluster A for research and development
- Cluster B for production data processing

" Cluster A B

Chunkservers 342 227

Available disk space 72 TB 180 TB

Used disk space 55 TB 155 TB

Number of Files T30 k 37 k

Number of Dead fles 22 k 232 k

Number of Chunks 992 k 50 Lk

Metadata at chunkservers 13 GB 71 GB |

Metadata at master 45 MB 60 MB .
Table 2: Characteristics of two GFS clusters & 98
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Experimental results, cont’'d

[ Cluster

Read rate (last minute)
Read rate (last hour)
Read rate (since restart )

Y
583 MDB/s
562 MB/s
580 MB/s

B
380 MDB/s
384 MB/s
49 MB/s

Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s

Master ops (last minute )
Master ops (last hour)
Master ops (since restart)

325 Dps:;'rs
381 Ops/s
202 Ops/s

RR] Dps:f =
518 Ops/s
347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

Master load
Not a problem
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Experimental results, cont’'d

Recovery time

* A single chunkserver restores in 23.2
minutes

' When 2 chunkservers are killed, chunks
restore to at least 2x replications in 2
minutes




Experimental results, cont’'d

Chunkserver workloads

Operation Head Write Record Append
Cluster X X X ¥ X Y-
Ok 04 26 0O 0 0 0
1B..1K 01 41 6.6 4.9 0.2 9.2
1K..8K 65.2 38.5 0.4 1.0 | 189 15.2
SK..64K 20.9 45.1 | 17.8 43.0 | 78.0 2.8
64K .. 128K 0.1 0.7 23 19| < A1 4.3
128K 256K 02 03]316 04| <.1 10.6
256K..512K 0.1 0.1 2 e | el 31.2
512K..1M 3.9 69 | 355 28.7 2.2 25.5
IM..inf 0.1 1.8 1.5 12.3 0.7 2.2

Table 4: Operations Breakdown by Size (%). For :
reads, the size is the amount of data actually read and trans- &,
ferred, rather than the amount requested.
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Experimental results, cont’'d

Operation Read Write Record Append
Cluster X Y x X X X
1B..1K e ol | d el | = 1 |
1K..8K 13.8 39 a1 &k | el 3 0.1
SK..64K 11.4 93 3 4 5.9 2.3 0.3
641 128K 0.3 0.7 0.3 03| 22.7 1.2
128K..256 K 08 06| 165 02| <.1 5.8
256K..512K 1.4 03 24 7V | = i1 38.4
512K..1M 65.9 55.1 | 74.1 58.0 i 168
1M..inf G.4 30.1 3.3 28.0 | 3.9 7.4

Table 5: Bytes Transferred Breakdown by Opera-
tion Size (%). For reads, the size is the amount of data
actually read and transferred, rather than the amount re-
guested. The two may differ if the read attempts to read
beyvond end of file, which by design is not uncommeon in our
workloads.
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Experimental results, cont’'d

Master workload

Cluster

Cpen

Dielete
FindLocation
FindLeaseHolder
FindMatchingFiles
All other combined
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Table 6: Master Requests Breakdown by Type (%)
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Conclusions

One sentence summary

" The authors propose a mechanism to build a
distributed file system above a cluster of cheap
machines, and specially tune the design to the
actually applications running in google

MaJor flaws
- The system do not guarantee performance on
applications other than those running in google

- Diagnostic tools are kind of weak. When the
system scales, it will be prohibitively expenswe (i
to diagnose by looking into logs < _ﬁuﬁ f\‘é




Any questions?

o




The end

Thank you!
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