
The Google File System

Sanjay Ghemawat, howard
Gobioff, and Shun-Tak Leung

Presented by Hongyu
Gao
Northwestern
University

Outline

h Motivation
 Key observations/assumptions
 Design overview
 System interactions
 Master operation
 Fault tolerance and diagnosis
 Experimental results
 Conclusions

Motivation

 To build a distributed file system
above a cluster of cheap machines.

 The system guarantees:
h Performance
 Scalability
 Reliability
 Availability

Key
observations/assumptions

 Component failures are normal
 Large files are common case
 Most files are mutated by appending

new data
 Co-designing the applications and

the file system API benefits the
overall system

Key observations/assumptions,
cont’d

 The workloads primarily consist of
two kinds of reads: large streaming
reads and small random reads

 High sustained bandwidth is more
important than low latency

Design overview

 Interface
 Files are organized hierarchically in

directories and identified by pathnames
 Support operations of create, delete,

open, close, read, write, snapshot and
record append

Design overview, cont’d

 Architecture
 A single master to make control

decisions
 Multiple chunkservers to store data
 Multiple clients to access the system
 Files are divided into fixed-size chunks
 Each chunk is replicated on multiple

chunkservers (reliability/availability)

Design overview, cont’d

Design overview, cont’d

 An illustrative example

Design overview, cont’d

 Other considerations:
 64MB chunk size (large files are

common)
 Metadata:

 File and chunk namespace
 The file-to-chunk mapping
 The locations of each chunk’s replicas

 Operation log

Design overview, cont’d

 Consistency model

System interactions

 Leases and Mutation Order

System interactions, cont’d

 Control flow
 Client-master, then from the client to

the primary and then to all secondaries
 Data flow

 Linear along a carefully picked chain of
chunkservers in a pipelined fashion

System interactoin, cont’d

 Atomic record appends
 Guarantees that the data is written at

least once as an atomic unit
 Snapshot

 First revoke all leases on the chunks
about to snapshot

 Duplicate metadata
 Copy-on-write technique

Master operation

 Namespace management and
locking
 Each node in the namespace tree has an

associated read-write lock
 Each master operation on namespace

acqures a set of locks before it runs
 Locks are acquired in order
 Example: /d1/d2/…/dn/leaf

/d1, /d1/d2, …, /d1/d2/…/dn, read lock
/d1/d2/…/dn/leaf, write lock

Master operation, cont’d

 Replica creation
 Place replica on chunkservers with low

disk space utilization
 Limit the number of recent creation on

each chunkserver
 Spread replicas of a chunk across racks

Master operation, cont’d

 Re-replication
 How far is it from its replication goal
 Is it a chunk for live file
 Is it blocking client progress

 Rebalancing

Master operation, cont’d

 Garbage collection
 The master renames a deleted file with

a hidden name with timestamp
 The master deletes metadata after

predefined time interval
 The chunkservers delete orphaned

chunks
 Simple, reliable and do not generate

additional network traffic

Master operation, cont’d

 Stale replica detection
 Use chunk version number
 The chunk replica with less advanced

version number is stale
 The higher version number is considered

up-to-date

Fault tolerance and
diagnosis

 High availability
 Both master and chunkservers can do

fast recovery
 Both master and chunks have multiple

replicas
 Shadow masters provide read-only

access to the file system when the
primary master is down

Fault tolerance and diagnosis,
cont’d

 Data integrity
 Each chunkserver use checksumming to

detect corruption of stored data.
 Diagnostic tools

 Use logs

Experimental results

 Reads
 Clients simultaneously

reads a random 4MB
region from a 320 GB
file set

 Reach up to 80% of
theoretical limit

Experimental results, cont’d

 Writes
 Clients simultaneously

write to distinct files.
 Each client writes 1GB

data to a new file in a
series of 1 MB writes

 Reach up to half of
theoretical limit

Experimental results, cont’d

 Record appends
 Clients append

simultaneously to a
single file.

 Performance starts at 6
MB/s and drops to 4.8
MB/s.

Experimental results, cont’d

 Real world clusters
 Cluster A for research and development
 Cluster B for production data processing

Experimental results, cont’d

Master load
Not a problem

Experimental results, cont’d

 Recovery time
 A single chunkserver restores in 23.2

minutes
 When 2 chunkservers are killed, chunks

restore to at least 2x replications in 2
minutes

Experimental results, cont’d

 Chunkserver workloads

Experimental results, cont’d

 Operation on large files should be
optimized

Experimental results, cont’d

 Master workload

Conclusions
h One sentence summary

h The authors propose a mechanism to build a
distributed file system above a cluster of cheap
machines, and specially tune the design to the
actually applications running in google

 Major flaws
 The system do not guarantee performance on

applications other than those running in google
 Diagnostic tools are kind of weak. When the

system scales, it will be prohibitively expensive
to diagnose by looking into logs

Any questions?

The end

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

