The Google File System

Presented by Hongyu
Gao

Northwestern
Universit

Outline

 Motivation

* Key observations/assumptions
" Design overview

- System interactions

- Master operation

 Fault tolerance and diagnosis
- Experimental results &
- Conclusions o o

Motivation

“ To build a distributed file system
above a cluster of cheap machines.

" The system guarantees:
" Performance

* Scalability
- Reliability
~ Avallability

Key
observations/assumptions

- Component failures are normal
* Large files are common case

- Most files are mutated by appending
new data

- Co-designing the applications and

the file system API benefits the

overall system | (=

Key observations/assumptions,
cont’d

* The workloads primarily consist of
two kinds of reads: large streaming
reads and small random reads

* High sustained bandwidth is more
important than low latency

Design overview

" Interface

" Files are organized hierarchically in
directories and identified by pathnames

* Support operations of create, delete,
open, close, read, write, snapshot and
record append

Design overview, cont’'d

* Architecture

~ A single master to make control
decisions

* Multiple chunkservers to store data
* Multiple clients to access the system
" Files are divided into fixed-size chunks

- Each chunk is replicated on multiple

chunkservers (reliability/availability) | ‘:3
By,

Design overview, cont’'d

Application| _ A TR Fahar :
PP (file name, chunk index) | OFS master ,» /foo/bay
R a " I " 9
GFS client |, File namespace ,/ | chunk 2ef0
(chunk handle, !
chunk locations) 3
/ Legend:
mmm) Data messages
A , i . .
Instructions to chunkserver = Control messages
. Chunkserver state
(chunk handle, byte range) 1 1
GES chunkserver GFES chunkserver
chunk data)) , e || SR
Linux file system Linux file system
0 Lf - Lﬁ Lf boo
Figure 1: GFS Architecture
", e
. =
g

% wxs ¥ 4
(%

a5 p "y : (“r\u‘_ ' H:_ o
% SHEn) N) %) M@% ;}, % 20—y

e,

Design overview, cont’'d

- An Iillustrative example

1- (e .'m ¥ I'm .'m 2
2 % i"%iff*’lpff iﬂﬂ)jj}f’ ﬂ iﬂ%bf 3 \

Design overview, cont’'d

- Other considerations:

- 64MB chunk size (large files are
common)
- Metadata:
* File and chunk namespace
* The file-to-chunk mapping
* The locations of each chunk’s replicas

" Operation log

Design overview, cont’'d

Consistency model

Write Record Append
Serial defined defined
SUCCESSE interspersed with
[Concurrent | conststent triconsistent
SUCCesses but undefined
"~ Faillure inconsistent

System interactions

Leases and Mutation Order

4 stepl
.| Client | | Master

I

Secondary =
Replica A

l

Primary
Replica -

l Legend:
— Control

Secondary —)
Replica B |«

[

M

Figure 2: Write Cantrol and Data Flow

= {\ y = '{\ y i {\) = ":\ y v N
P = el =P E) =P E)=

System interactions, cont'd

* Control flow

- Client-master, then from the client to
the primary and then to all secondaries

* Data flow

 Linear along a carefully picked chain of
chunkservers in a pipelined fashion

System interactoin, cont’'d

- Atomic record appends

* Guarantees that the data is written at
least once as an atomic unit

“ Snapshot
" First revoke all leases on the chunks
about to snapshot
" Duplicate metadata o

- Copy-on-write technique

Master operation

" Namespace management and
locking

" Each node in the namespace tree has an
associated read-write lock

- Each master operation on namespace
acqures a set of locks before it runs

- Locks are acquired in order
" Example: /d1/d2/.../dn/leaf
/d1, /d1/d2, ..., /d1/d2/.../dn, read 5&)2

Master operation, cont’'d

"~ Replica creation

 Place replica on chunkservers with low
disk space utilization

“ Limit the number of recent creation on
each chunkserver

- Spread replicas of a chunk across racks

Master operation, cont’'d

* Re-replication

" How far is it from its replication goal
s it a chunk for live file

s it blocking client progress

" Rebalancing

o,
o
'

= = == =) m’%

Master operation, cont’'d

- Garbage collection

 The master renames a deleted file with
a hidden name with timestamp

 The master deletes metadata after
predefined time interval

- The chunkservers delete orphaned
chunks X

- Simple, reliable and do not generate <4
additional network traffic .

Master operation, cont’'d

- Stale replica detection
- Use chunk version number

“ The chunk replica with less advanced
version number is stale

* The higher version number is considered
up-to-date

Hi

Fault tolerance and
diagnosis

gh availability

Both master and chunkservers can do
fast recovery

- Both master and chunks have multiple

replicas

- Shadow masters provide read-only

access to the file system when the
primary master is down . 2

Fault tolerance and diagnosis,
cont’d

Data integrity

- Each chunkserver use checksumming to
detect corruption of stored data.

Diagnostic tools
- Use logs

o,
o
'

= = == =) m’%

Experimental results

- Reads

- Clients simultaneously
reads a random 4MB
region from a 320 GI P

file Set) Hm_: /Nclwmrk limit
 Reach up to 80% of = B
theoretical limit 3 %0-
.[}- e
U

Mumber of clients N

(a) Reads

. a5l : - a5l : - okl : - a5l : = ok : }. .-"'"r - '\ _.;
= =0) =P el =0)~ U

Experimental results, cont’'d

- Writes

- Clients simultaneously
write to distinct files.

* Each client writes 1GB
data to a new file in a

. . ;”’f etwork limit
series of 1 MB writes ~ _“| /T
s 1/
* Reach up to half of i° / __
theoretical limit Bl) {
/ goregate write rate "‘}
S A TR M ‘_wr-uﬂ

Number of clients N

Experimental results, cont’'d

" Record appends

- Clients append
simultaneously to a
single file.

* Performance starts a

MB/S and drops to 4 : % H}—_ Network limit
=
M B/S . *E fﬁ_L“---I—I_E{_
S 54 - _—— s
L A
< Aggregate append rate
0 5 10 [5

Number of clients N

Experimental results, cont’'d

Real world clusters
" Cluster A for research and development
- Cluster B for production data processing

" Cluster A B

Chunkservers 342 227

Available disk space 72 TB 180 TB

Used disk space 55 TB 155 TB

Number of Files T30 k 37 k

Number of Dead fles 22 k 232 k

Number of Chunks 992 k 50 Lk

Metadata at chunkservers 13 GB 71 GB |

Metadata at master 45 MB 60 MB .
Table 2: Characteristics of two GFS clusters & 98

.
o
'

/’_““\

Experimental results, cont’'d

[Cluster

Read rate (last minute)
Read rate (last hour)
Read rate (since restart)

Y
583 MDB/s
562 MB/s
580 MB/s

B
380 MDB/s
384 MB/s
49 MB/s

Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s

Master ops (last minute)
Master ops (last hour)
Master ops (since restart)

325 Dps:;'rs
381 Ops/s
202 Ops/s

RR] Dps:f =
518 Ops/s
347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

Master load
Not a problem

ﬂ ‘)'5:1‘_%1' } %%’

Experimental results, cont’'d

Recovery time

* A single chunkserver restores in 23.2
minutes

' When 2 chunkservers are killed, chunks
restore to at least 2x replications in 2
minutes

Experimental results, cont’'d

Chunkserver workloads

Operation Head Write Record Append
Cluster X X X ¥ X Y-
Ok 04 26 0O 0 0 0
1B..1K 01 41 6.6 4.9 0.2 9.2
1K..8K 65.2 38.5 0.4 1.0 | 189 15.2
SK..64K 20.9 45.1 | 17.8 43.0 | 78.0 2.8
64K .. 128K 0.1 0.7 23 19| < A1 4.3
128K 256K 02 03]316 04| <.1 10.6
256K..512K 0.1 0.1 2 e | el 31.2
512K..1M 3.9 69 | 355 28.7 2.2 25.5
IM..inf 0.1 1.8 1.5 12.3 0.7 2.2

Table 4: Operations Breakdown by Size (%). For :
reads, the size is the amount of data actually read and trans- &,
ferred, rather than the amount requested.

..' .h.,;'_" F ‘._-il?.-‘ -.p-ﬂ'.“-."- —
t‘ a

W)
Fam =)

5

Experimental results, cont’'d

Operation Read Write Record Append
Cluster X Y x X X X
1B..1K e ol | d el | = 1 |
1K..8K 13.8 39 a1 &k | el 3 0.1
SK..64K 11.4 93 3 4 5.9 2.3 0.3
641 128K 0.3 0.7 0.3 03| 22.7 1.2
128K..256 K 08 06| 165 02| <.1 5.8
256K..512K 1.4 03 24 7V | = i1 38.4
512K..1M 65.9 55.1 | 74.1 58.0 i 168
1M..inf G.4 30.1 3.3 28.0 | 3.9 7.4

Table 5: Bytes Transferred Breakdown by Opera-
tion Size (%). For reads, the size is the amount of data
actually read and transferred, rather than the amount re-
guested. The two may differ if the read attempts to read
beyvond end of file, which by design is not uncommeon in our
workloads.

optlmlzed

: __.‘_r'-x e

'F"

Experimental results, cont’'d

Master workload

Cluster

Cpen

Dielete
FindLocation
FindLeaseHolder
FindMatchingFiles
All other combined

w2

y
OCONFOG
|_I.

— Oy
el

= N T | B
oo bo e 0o o Lol e

Table 6: Master Requests Breakdown by Type (%)

) =)= =T i W T

Conclusions

One sentence summary

" The authors propose a mechanism to build a
distributed file system above a cluster of cheap
machines, and specially tune the design to the
actually applications running in google

MaJor flaws
- The system do not guarantee performance on
applications other than those running in google

- Diagnostic tools are kind of weak. When the
system scales, it will be prohibitively expenswe (i
to diagnose by looking into logs < _ﬁuﬁ f\‘é

Any questions?

o

The end

Thank you!

= S
ST =T
a5l o5 Jv mﬁj}!%ﬂf ,—-——-__\.\:;)_)}é. __N’ -
A= =) e

W

o

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

