
Information Flow Control For 
Standard OS Abstractions

Maxwell Krohn, Alex Yip, Micah Brodsky, Natan Cliffer, Frans
Kaashoek, Eddie Kohler, Robert Morris

MIT
SOSP 2007

Presenter: Lei Xia
Mar. 2 2009



Outline
Motivation
Flume Model
Flume System
Evaluation
Conclusion



Motivation
Protecting confidential data in computing 
environments 
Access controls are insufficient to regulate 
the propagation of information after it has 
been released for processing by a program



Information Flow Security
Track and regulate the information flows of 
the system

Prevent secret data from leaking to 
unauthorized processes (secrecy)
Prevent untrusted software to be compromised 

through malicious inputs (integrity)



Decentralized Information Flow Control 
(DIFC)

Share information with untrusted code
Control how untrusted code disseminates 
the shared information to others
Support for declassification of information 
in a decentralized way
Improves the security of complex 
applications even in the presence of 
potential exploits



Previous Work
Programming language abstractions

Jif: provide more fine-grained control at the 
granularity of functions in processes
But requires applications to be rewritten

Integrated into communication primitives in 
OS kernel

Asbestos and HiStar Operating Systems
Granularity of unreliable messages between 

processes (Asbestos) or segments (HiStar)



Flume
Implements a user-level reference monitor
Provides DIFC at the granularity of 
processes
Integrates DIFC controls with standard 
communication channels like pipe, sockets, 
file descriptors
Simple label system



Flume Model - Tags and Labels

Flume model closely follow IFC, add new 
representation
Each tag is associated with some category 
of secrecy or integrity
Labels are subsets of Tags

Form a lattice under partial order of subset 
relation

Used for tracking



Flume Model - Secrecy and Integrity
Each Flume process p has two labels

Sp for secrecy
Ip for integrity

If tag t ∈ Sp, then it is assumed that process 
p has seen private data tagged with t
If t ∈ Ip, then every input to p has been 
endorsed as having integrity for t
Files and objects also have secrecy and 
integrity labels



Decentralized Priviledge
Any process can create new tags

Gets the privilege to declassify and/or endorse 
information for those tags

Two capabilities per tag
t+ : Ability to add t to the label
t- : Ability to remove t from the label

Each process p owns a set of capabilities 
Op



Capabilities
Dual privilege

Dp = {t | t+ ∈ Op and t- ∈ Op}
A process p allocating a new tag t

Op = Op U {t+, t-}
Global capability set O

System enforces that O ⊆ Op for all p
Only tag allocation can change O



Flume Model: Security – Safe 
Messages

Restriction of process communication to 
prevent data leaks
p can send a message to q only if,

Sp ⊆ Sq (less secret to more secret ->allow)
Iq ⊆ Ip (more integrity to less integrity ->allow)

A message from p to q is safe iff,
Sp – Dp ⊆ Sq U Dq and
Iq – Dq ⊆ Ip U Dp



Secrecy and Integrity Protections
Export protection

Secrecy tag t+ is added to O
Only process with t- can 'declassify'

Read protection
Controlling t+, thereby limiting the processes

Integrity protection
integrity tag v- is added to O
Only a certifier who has v+ can 'endorse'



Secrecy - Illustrated



Integrity - Illustrated



Security – Safe Label Changes
External Sinks and Sources

Remote host, terminal, sockets…
Sx = Ix = {}

Objects
Assigned immutable secrecy and integrity 

labels
Creating process specifies these labels



Security – Safe Label Changes
In Flume, only process p can change Sp or Ip
and must request such a change explicitly
For a process p, L be Sp or Ip, L' be the new 
label
Change from L to L' is safe iff,

{L' – L}+ U {L – L'}- ⊆ Op



Flume System: Endpoint abstraction
Need to apply DIFC controls to existing APIs
Glue between flume and standard 
communication abstractions like sockets, file 
descriptors
Flume assigns an endpoint to each Unix file 
descriptor
A process can potentially adjust the labels 
on an endpoint
All IPC happens between two endpoints



Flume System: Endpoints
A process owns readable/writable/both 
endpoints for each of its resource
A readable endpoint is safe iff

(Se – Sp) U (Ip – Ie) ⊆ Dp

A writable endpoint is safe iff
(Sp – Se) U (Ie – Ip) ⊆ Dp

Safe flow between endpoints ensures safe 
flow between processes



Examples – IPC communication



Examples – Shell and Editor



Flume Implementation
Linux Security Model implements Flume’s system 
call interposition
Reference Monitor keeps track of each process’s 
labels, authorizes or denies its requests to change 
labels and handles system calls on its behalf
RM has the following components

Spawner process
Remote tag registry
User space file servers

Flume aware libc does system call interposition



Flume Architecture



Spawner process
The reference monitor calls spawner which calls fork
In the child process, the spawner

Enables the Flume LSM policy
Performs any setlabel label manipulations if the file to execute 
is setlabel
Opens the requested executable (e.g. foo.sh), interpreter (e.g. 
/bin/sh) and dynamic linker (e.g., /lib/ld.so) via standard Flume 
open calls, invoking all of Flume’s permission checks;
Closes all open file descriptors except for its control socket 
and those opened in the previous step
Claims any file descriptors by token
Calls exec



Limitations
Bigger TCB

Linux stack (Kernel + glibc + linker)
Reference monitor (~21 kLOC)

Confined processes like MoinMoin don’t get 
full POSIX API.

spawn() instead of fork() & exec()
flume_pipe() instead of pipe()



Case Study – Moin Moin Wiki
Python based web publishing system
Designed to share documents
Each page can have an ACL
91 K LOC!



Case Study – Overhead
1000 LOC launcher/declassifier
1000 out of 100K LOC in MoinMoin changed
Python interpreter, Apache unchanged
Two ACL bugs are not exploitable in Flume
Performs within a factor of 2 of the original on 

read and write tests
Latency and throughput within 45% and 35% of 

the unmodified MoinMoin wiki, respectively



Case Study – Interposition Overhead

For most system calls, Flume adds 35–
286ms per system call which results in 
latency overhead of a factor of 4–35
Additional 2 system calls

　 accounts for approximately 40ms of Flume’s 
additional latency

An IPC round trip takes 12 system calls on 
Flume, incurring the three-fold performance 
penalty for additional system calls



Performance – System calls



Performance – FlumeWiki



Results
Does Flume allow adoption of Unix software?

1,000 LOC launcher/declassifier
1,000 out of 100,000 LOC in MoinMoin changed
Python interpreter, Apache, unchanged

Does Flume solve security vulnerabilities?
Without our knowing, we inherited two ACL bypass 
bugs from MoinMoin
Both are not exploitable in Flume’s MoinMoin

Does Flume perform reasonably?
Performs within a factor of 2 of the original on read 
and write benchmarks



Conclusion
DIFC is a challenge to Programmers
Flume: DIFC in User-Level

Preserves legacy software
Complements today’s programming techniques

MoinMoin Wiki: Flume works as promised



Thank you!


