FlightPath: Obedience vs. Choice in Cooperative Services

Authors: Harry C. Li, Allen Clement, Mirco Marchetti, Manos Kapritsos, Luke Robison, Lorenzo Alvisi, and Mike Dahlin

Presentor: Yinzhi Cao

Problems in P2P System

Byzantine Peers

They want to disrupt the service.

Selfish Peers

They may use the service without contributing their fair share.

Existing Work

- Works that use incentives information to argue that rational peers will obey a protocol, like KaZaA and BitTorrent.
 - Drawbacks: Some users may gain better service quality when cheating
- Works emphasizes rigor by using game theory (like Nash equilibrium) to design a protocol's incentives and punishments.
 - Drawbacks: Do not allow dynamic membership, waste network bandwidth to send garbage data

This Work: FlightPath

- High Quality Streaming
 - Good Service to Every Peer
- Broad Deplorability
 - Peak Upload Bandwidth is limited to ADSL Bandwidth
- Rational-tolerant
 - 1/10-Nash Equilibrium
- Byzantine-tolerant
 - Works well when 10% of peers act maliciously
- Churn-resilient
 - Has good performance when 30% peers churn every min

Nash Equilibrium

$$\forall x = (x_1, x_2, ..., x_n) \in S = S_1 \times S_2 \times ... \times S_n(S_i \text{ is a strategy set})$$

$$\exists f = (f_1(x), f_2(x), \dots, f_n(x)) \text{ is a payoff function of } x.$$

We can define a Nash Equilibrium Point x as

$$\exists \ x = (x_1, x_2, \dots, x_n) \ s. \ t. \ \forall i \ \forall x_i^* \neq x_i \ f_i(x_i^*) \geq f_i(x_i)$$

Also, we can define a ε – Nash Equilibrium Point x as

$$\exists \ x = (x_1, x_2, \dots, x_n) \ s. \ t. \ \forall i \ \forall x_i^* \neq x_i \ f_i(x_i^*) \geq (1 - \varepsilon) f_i(x_i)$$

Model: BAR Model

- Time is divided into rounds that are r_{len} seconds long.
- In each round, the source generates num_ups unique stream packets that expire after deadline round.
- All peers work together to distribute packages before deadline.

How can One Node Work?

- We call one node's work during a round a trade.
- A trade has four phases.
 - Partner Selection
 - History Exchange
 - Update Exchange
 - Key Exchange

Client d Client c _History request check selection History response History divulge. check history ~Briefcase Briefcase-Promise-~Promise check briefcase check briefcase check promise check promise -Keys Keysdecrypt briefcase decrypt briefcase

Taming Gossip(How to improve previous approach)

- Reservations
- Splitting Need
- Erasure Codes
- Tail Inversion
- Imbalance Ratio
- Trouble Detector

Reservations

- We partition n peers into logn bins and require a peer to choose a partner from a verifiable pseudo randomly chosen bin.
- Within a bin, we restrict nodes that a peer can communicate based on its id. A peer can only communicate nodes that the hash of its id and the other's id is less than some p.

$$[1 - [1 - p(1 - F_{byz})]^{\frac{n}{\lceil \log n \rceil}}]^{\lceil \log n \rceil} \ge 1 - \frac{1}{n}$$

Reservation Cont'd

- A node should make a reservation before it establish the connection.
- Peer d accepts a reservation only if it has not already accepted another reservation for the same round. Otherwise it rejects it.
- A node can indicate it has few options left in order to let others to accept it.

Splitting Need

- A peer splits its need into several parts and sends its needs to different nodes.
- This approach can reduce the possibility that a node receive duplicate package.

Erasure Codes

- n erasure code transforms a message of n blocks into a message with more than n blocks, such that the original message can be recovered from a subset of those blocks.
- We use erasure code here in order to evade Byzantine participants which may receive tracker's packages but not distribute them.

Tail Inversion

- A older package has a higher priority than new one.
- The reason is older one may be near the deadline.

Imbalance Ratio

- Imbalance Ratio a means a node can download N traffic but only upload aN traffic.
- According to the authors, a = 10% is a good tradeoff

Trouble Detector

 A node which observe itself has a bad performance may initiate more than one trade during a round.

Flexibility for Churn

Epochs

 An epoch is defined as e_{len} rounds. At the boundary between epochs e and e+1, the tracker shuffles membership list for epoch e+2 so that new members can join in this P2P system.

Tub Algorithm

 We classify peers into tubs based on their come-in time.

Tub Algorithm

- A node in a tub should obey the following three constraints.
 - Peer d is in c's view only if d precedes c in the list.
 - If *d* is in tub t or t 1, then *d* is in $c_{\pi}s$ view if the hash of concatenating *c's* member id with *d's* member id is less than *p*.
 - If *d* is in a tub t_{π} < t − 1, then *d* is in *c*'s view if the hash of concatenating *c*'s member id and d's member id is less than a parameter p_{π} .

Equilibrium Analysis(1)

• We define $u = (1 - j)\beta - w\kappa$ as utility function. j is the average number of jitter events per minute

β is the benefit from watching a jitter-free stream

w is the average upload bandwidth used in Kbps

к is the cost per Kbps.

Equilibrium Analysis(2)

$$\varepsilon = \frac{u_o - u_e}{u_e} = \frac{(j_e - j_o)\beta - (w_o - w_e)\kappa}{(1 - j_e)\beta - w_e\kappa}$$

let
$$\frac{w_0}{w_e} = b, \frac{\beta(1 - j_e)}{w_e k} = c, j_0 = 0$$

$$\varepsilon = \frac{\frac{cJ_e}{1 - j_e} + (1 - b)}{c - 1}$$

Equilibrium Analysis(3)

Evaluation

- Reduces jitter by several orders of magnitude compared to BAR Gossip
- Caps peak bandwidth usage to within the constraints of a cable or ADSL connection
- Maintains low jitter and efficiently uses and width despite flash crowds
- Recovers quickly from sudden peer departures
- Continues to deliver a steady stream despite churn
- Tolerates up to 10% of peers acting maliciously(Example)

Tolerates up to 10% of peers acting maliciously

Tolerates up to 10% of peers acting maliciously

Summary

- Merits
 - Improvement on Previous Work
- Drawbacks
 - Its 1/10 Nash Equilibrium is based on some parameter's value. But it fails to prove that value is achievable. Also it fails to prove its utility function can represent users' motivation.