
D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Vargese, G. Voelker, A. Vhadat

Presented by: Benjamin Prosnitz



 A typical server has only 5-10% resource 
utilization

 Servers have high memory requirements:

 Operating system

 Applications

 Caching Data

 Memory is the bottleneck for high 
consolidation



 Identify identical “Sharable” pages, store only 
one copy

 Identify similar “Patchable” pages, store a 
copy and patches for that copy

 Compress other infrequently used pages





 Guest “The Illusion” Page Table

 Shadow “The Real” Page Table

Guest Virtual Address: 6a b4 934

6a

b4

Guest Physical Page:

b801000

Guest Virtual Address: 6a b4 934

6a

b4

Host Physical Page:

a74f000

Identical 
needn’t

be set in both
tables!

OS in VM

VMM

Hardware



 Consider Identical Pages:

 Store only one copy

 Mark as read-only in Shadow Page Table

Physical Memory: OS1:

OS2:

Physical Memory: OS1:

OS2:

(Guest Page Tables are Unchanged!)



1. Application on Guest executes an instruction 
to write to a shared page

2. Because the Shadow page table has page 
89d92000 marked as read-only, a page fault
occurs which the VMM must handle

Guest Write 5 to 89d9231f!

89d92000 Frame: 34234000 R/O=Y

Simplified Shadow Page Table Lookup



3. The VMM receives the page fault and:

a. Allocates a new page frame

b. Copies data from the old page frame

a. Updates the shadow page table so the new copy 
is used by the guest application

4. The Guest finishes writing, oblivious to what 
the VMM did

Frame: 9453a000

Frame: 9453a000

Frame: 34234000

89d92000 R/O=N

Frame: 9453a000

1. A step was skipped: If the VMM discovers the page is marked R/O in the Guest OS, it lets the guest OS handle the page fault

1



1. Hash all interesting pages
2. Identify pages with matching hashes
3. Confirm that they are identical using byte-

by-byte comparison
4. Use copy-on-write to reduce memory 

consumption



1. Randomly choose k fixed comparison points 
in a page

2. Hash a 64-byte block in each of the k 
locations

3. Compute a secondary hash by combining 
the hash codes for each possible s-block 
group

4. Create patches for c candidates and store 
the best candidate as copy-on-write

ab8c
1d09 9cb8



(k,s),c=(# hashes, # hashes per group), # candidates for patch



 Compression is applied to pages that:

 Are infrequently used

 Have high compression ratios

 Have low similarity to other pages



 Uses a Not-Recently-Used (NRU) policy
 Periodically scans modified and referenced 

flags to identify pages as:
 Recently Modified (C1) – Stored as normal

 Not Recently Modified (C2) – Used for sharing and 
as reference pages for patching

 Not Recently Accessed (C3) – Used for sharing and 
patching

 Not Accessed for an Extended Period (C4) – Used 
for sharing, patching and compression



Lifetime of Patched and Compressed Pages for Three Different Workloads



 Need memory management functionality to 
store patches and compressed pages

 Need to support paging to disk since there 
may be lower-than-expected memory 
redundancy





Identical Pages



Random Pages



Similar Pages (95% similar)



Four identical VMs Execute dbench



Memory Savings with the Mixed-1 Configuration







 No evaluation of variance in performance or 
response time

 Can one expect a certain response time from 
servers using the DE?

 Is it slow when doing its periodic “clock” 
iterations?

 Is it slower for certain tasks, like creating 
processes?



 A shift in data would not allow for either 
sharing or patching (this could be due to an 
OS kernel security update adding a few 
instructions, etc.)

 What is the source of memory redundancy in 
heterogeneous configurations?




