Difference Engine:

Harnessing Memory Redundancy in Virtual Machines

D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Vargese, G. Voelker, A. Vhadat

Motivation

A typical server has only 5-10% resource
utilization

Servers have high memory requirements:
Operating system
Applications
Caching Data

Memory is the bottleneck for high
consolidation

Reducing Memory Usage: Strategy

Identify identical "Sharable” pages, store only
one copy

Identify similar "Patchable” pages, store a
copy and patches for that copy

Compress other infrequently used pages

Strong Potential

(from VM Snapshot)

Pages Initial After After
Sharing | Patching

Unique 191,646 191,646
Sharable (non-zero) 52,436 3,577
Zero 149,038 1

Total 393,120 195,224 | 88,422
Reference 50,727 | 50,727
Patchable 144,497 | 37,695

Memory Structures for VMs

Guest "The lllusion” Page Table

Guest Virtual Address: ' 6a | bz 934

Guest Physical Page:

- P4 b8o1000

Shadow "The Real” Page Table

Guest Virtual Address: ' 6a | bz 934

Host Physical Page:

a74fooo

Copy-on-Write and VMMs

Consider Identical Pages: Physical Memory: OSa:

Physical Memory:

1% 1% [

Store only one copy

0OSa2:

|

Mark as read-only in Shadow Page Table
(Guest Page Tables are Unchanged!)

Example: Writing to a Shared Page

Application on Guest executes an instruction
to write to a shared page

Because the Shadow page table has page
89d92000 marked as read-only, a
occurs which the VMM must handle

Frame: 34234000

Simplified Shadow Page Table Lookup

Example: Writing to a Shared Page

The VMM receives the page fault and:
Allocates a new page frame | Frame: 94533000
Copies data from the old page frame

Copy

Frame: 34234000 Frame: 94532000

Updates the shadow page table so the new copy
is used by the guest application

Frame: 94532000 ROEIN

The Guest finishes writing, oblivious to what
the VMM did

1. A step was skipped: If the VMM discovers the page is marked R/O in the Guest OS, it lets the guest OS handle the page fault

Page Sharing (for Identical Pages)

Hash all interesting pages

Identify pages with matching hashes
Confirm that they are identical using byte-
by-byte comparison

Use copy-on-write to reduce memory
consumption

Patches (for Similar Pages)

Randomly choose k fixed comparison points
In a page
Hash a 64-byte block in each of the k
locations

Compute a secondary hash by combining
the hash codes for each possible s-block

group D D ab8c ocb8

1dog

Create patches for c candidates and store
the best candidate as copy-on-write

Savings with Different Patching

Schemes

40 e e e . .
1 MIXED-1
35 1 MIXED-2
30
;@25 -
Y 0 Wit
E)zo - 11
&
wn 157 o
10 T[] [
5
{}I 1 | | | | |
N_VYD V vV V v

Q\Q’\\Q”Q’Q\Q’Q\Q\Q)q)@@\q)q,\
RNV AE AN 2N 2N S

(k,s),c=(# hashes, # hashes per group), # candidates for patch

Compression

Compression is applied to pages that:
Are infrequently used
Have high compression ratios
Have low similarity to other pages

ldentifying Infrequently Used Pages

Uses a Not-Recently-Used (NRU) policy
Periodically scans modified and referenced
flags to identify pages as:

Recently Modified (C1) — Stored as normal

Not Recently Modified (C2) —Used for sharing and
as reference pages for patching

Not Recently Accessed (C3) —Used for sharing and
natching

Not Accessed for an Extended Period (C4) — Used
for sharing, patching and compression

Evaluation: NRU Policy

100 . .
— RUBIS

-+ Kernel Compile
gol == Mixed Workload

601

Pages (%age)

201

o100 1¢ _i¢ i 1 10 10
Life time (ms)

Lifetime of Patched and Compressed Pages for Three Different Workloads

Other Considerations

Need memory management functionality to
store patches and compressed pages

Need to support paging to disk since there
may be lower-than-expected memory
redundancy

Evaluation: Micro-Benchmarks

Function Mean execution time (/.S)
share_pages 6.2
cow_break 25.1
compress_page 29.7
uncompress 10.4
patch_page 338.1
unpatch 18.6
swap-out_page 48.9
swap.in_page 7151.6

- CPU overhead of different functions.

Evaluation: Artificial Scenarios

ldentical Pages

100

100 100
W 2 3@ (s (6)_{1_@),_12{ W) 2 (3@ (5)6) (7)) (9) (L) (2) (3)(4) (5)(6) ~(7)(8
80 PR B | 30 F—— 80! M
9 3 =
< 60 = 6ol & 60l
(5] w wn
o
= g g
40 > | >
g 8 40 ﬁ 40
20 b 20| 20}
0 L
100 2°9|.. (3)00 400 300 0 100 200 300 200 500 0 100 200 300 200 500
ime (s Time (s) Time (s)
Sharing

Patching Compression

Evaluation: Artificial Scenarios

Random Pages

100, 10

100,
(1) (2) ((3)(4) ((B5)(6) (N(’) (9) (1) (2) (3)(4) (5)(6) (7(®8) (9) (1) (2) (34 (5)(6) (7)(8) (9)
80 80 ! 80
> —_ —_
e 60 £ 60 2 60
(9]
o v (]
£ 2 g
40 > >
& B 40 = 40
20 20 | 20|
f— L
0 Lf——_L-r—\/—\
100 209I'ime (53)00 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time (s) Time (s)
Sharing

Patching Compression

Evaluation: Artificial Scenarios

Similar Pages (95% similar)

Savings (%)

100
1) @2 (@ 66 @O ©)

80

60

40

20

0 100 200. 300 400
Time (s)
Sharing

500

100 100
(@ G (5 (B (78 (o) W@ @@ 616 (@) (@
80 80
& 60 g 60
wn wn
g g
> >
40 40
A @
20 20
v
0 100 200 300 200 500 0 100 200 300 200 500
Time (s) Time (s)
Patching

Comporession

Evaluation vs. ESX:

Homogenous Workload

Savings (%)

100 . ; :
« DE Shared DE Total
- = DE Patched
-~ DE Compressed
80
60 RRVA.
40 H
ESX aggressive
20}
P Peivivyvy mieitrmtaturerarare st iaia aaatntatinratataiatar
0 200 400 600 800 1000
Time (s)

Four identical VMs Execute dbench

Evaluation vs. ESX:

Heterogeneous Workload

~]
=

------ DE Shared
- = DE Patched
-~ DE Compressed

=)
o

DE Total

o
o

=
Eﬁ : ESX aggressive
.g TIILL
©
w2
-'r- --------
00 200 400 600 800 1000 1200 1400 1600

Time (s)

Memory Savings with the Mixed-1 Configuration

Evaluation: Performance

@ Baseline
1 DE

Response time (ms)
=
un
(]

1 2 4 6
Number of VMs

Average response time

Evaluation: Performance

250000 @—e@ Baseline 4VMs *_,—-""‘-
< DE 5VMs
- -+ DE 6VMs e
k5 =8 DE 7VMs T s
> ‘ o q
T 200000 :
c
e —
2D
wn
Y 150000
2
O
| -
o
2 100000}
000 ' . . .
> 800 800 1000 1200 1400 1600

Total offered load (# clients)

Total requests handled

Issues (part 1)

No evaluation of variance in performance or
response time

Can one expect a certain response time from
servers using the DE?

s it slow when doing its periodic “clock”
iterations?

s it slower for certain tasks, like creating
processes?

Issues (part 2)

A shift in data would not allow for either
sharing or patching (this could be due to an
OS kernel security update adding a few
Instructions, etc.)

What is the source of memory redundancy in
heterogeneous configurations?

Thank you!

