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Background 

   Focus of chip manufactures has been number of 
cores on a chip 
– This leads to more sharing between cores 

  Modern operating systems not optimized for 
sharing between cores 
– Sharing between cores may not be required 
– Unnecessary sharing becomes a bottleneck for 

performance 
– Example: File descriptors 
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dup and close 

  As number of cores increases, dup + close operations 
decrease 

  Shared table describing open files is causing the contention 
  Standard is that all new file descriptors must be visible to all 

threads 
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Explanation 

  How falsely shared cache 
line hurts performance  
–  Inter-chip reads are slow 
– Sharing requires accesses 

to remote cache 
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Explanation 

  Widely-shared locks 
decrease performance 

  Corey uses MCS locks 
where each core spin 
separately 

EECS 443 Advanced Operating Systems 



6 

Proposed Solution: Corey 

  Want to allow applications to scale well with an 
increase in the number of cores 

  Try something new (like an exokernel…) 
– Provide abstractions that applications can control 
– Applications can control sharing of OS data structures 

  Corey’s new abstractions for the OS 
– Address ranges 
– Kernel cores 
– Shares 
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Address Ranges 

  Options for concurrency 
– Threads 

 Typically shares a single address space between all threads 

– Processes 
 Typically has separate address spaces for each process 

– Each only works for one sharing pattern 
  Applications wanting a mix of both are forced to 

choose (e.g. MapReduce)  
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MapReduce 

  Two phases 
–  Map phase 

  Master node takes input, splits up the work, distributes to other nodes 
(this process is repeated by worker nodes) 

  Separate address spaces has no contention 
  Shared address causes contention when distributing data 

–  Reduce phase 
  Master node takes the answers to sub-problems and combines them to 

get output (repeated up the chain) 
  Separate address space leads to soft page faults per core per page of 

intermediate results 
  Shared address space has no soft page faults as results are returned 

  We want the best of both worlds 
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Address Ranges 

  Corey’s kernel abstraction of address 
ranges 
–  Range of virtual-to-physical 

mappings 
–  An application can allocate ranges, 

insert mappings, and place an 
address range at the desired location 

–  If multiple cores’ address space uses 
the same range, the space is shared 

  Result 
–  A core can update private address 

space without contention 
–  Space is only shared with cores that 

manipulate the mappings 
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Kernel Cores 

  System calls in applications 
– System calls are performed on same core as caller 
– Must acquire locks for shared kernel data structures 
– Can be costly 

  Kernel abstraction for a kernel core 
– A single core handles all kernel functions 

 Manages hardware devices 
 Execute system calls from other cores 

– E.g. A Web service application with a core dedicated to 
handling the network device 

  Application decides if there will be performance 
improvements 
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Identifier Sharing 

  Many kernel operations need to look up identifiers 
in tables to find a pointer to kernel data 
– File descriptors 
– Process IDs 

  The OS implementation determines the scope of 
sharing of identifiers and tables (e.g. Unix) 
– File descriptors shared between threads 
– Process identifiers are generally global 
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Shares 

  Kernel share abstraction 
– Allow applications to create lookup tables and control 

sharing 
 Each core starts with a unique, private share 
 Sharing is done by creating a share and adding the share’s ID to 

that core’s private root share (or a share within the root share) 
 A root share is always private and does not need locking 
 The shares that are reachable from the private share are the 

identifies the core can use 

– Contention may still be a problem but is avoidable 
  Identifiers should always be placed in most limited sharing 

– Applications must keep track of the location of 
identifiers 
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Back to File Descriptors 

  Private file descriptors 
– Place descriptors in its core private root share if it is 

only used by one thread 
  Shared file descriptors 

– All cores sharing the descriptor create a share that 
holds the descriptor 

  Application can limit sharing and avoid 
unnecessary contention between tables and 
identifiers 
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Performance (Address Ranges) 
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Performance (Address Ranges) 
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Performance (Kernel Cores) 
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Performance (Kernel Cores) 
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Performance (Shares) 
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Performance (Shares) 
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Performance (wri MapReduce) 
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Performance (wri MapReduce) 
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Performance (webd) 
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Comments 

  Corey is a prototype 
– May not be a fair comparison to Linux 
– Actual performance could be affected both ways 

  Many of these concepts could be implemented 
current Oses 

  Paper is trying to argue that applications need to 
control sharing for scaling purposes 
– Exokernels may become more important as the number 

of cores per chip continues to increase 

EECS 443 Advanced Operating Systems 


