
Corey: An Operating System for Many Cores

Presented by Zachary Bischof

S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev,
L. Stein, M. Wu, Y. Dai, Y. Zhang, Z. Zhang

 OSDI 2008

2

Background

  Focus of chip manufactures has been number of
cores on a chip
– This leads to more sharing between cores

  Modern operating systems not optimized for
sharing between cores
– Sharing between cores may not be required
– Unnecessary sharing becomes a bottleneck for

performance
– Example: File descriptors

EECS 443 Advanced Operating Systems

3

dup and close

  As number of cores increases, dup + close operations
decrease

  Shared table describing open files is causing the contention
  Standard is that all new file descriptors must be visible to all

threads

EECS 443 Advanced Operating Systems

4

Explanation

  How falsely shared cache
line hurts performance
–  Inter-chip reads are slow
– Sharing requires accesses

to remote cache

EECS 443 Advanced Operating Systems

5

Explanation

  Widely-shared locks
decrease performance

  Corey uses MCS locks
where each core spin
separately

EECS 443 Advanced Operating Systems

6

Proposed Solution: Corey

  Want to allow applications to scale well with an
increase in the number of cores

  Try something new (like an exokernel…)
– Provide abstractions that applications can control
– Applications can control sharing of OS data structures

  Corey’s new abstractions for the OS
– Address ranges
– Kernel cores
– Shares

EECS 443 Advanced Operating Systems

7

Address Ranges

  Options for concurrency
– Threads

 Typically shares a single address space between all threads

– Processes
 Typically has separate address spaces for each process

– Each only works for one sharing pattern
  Applications wanting a mix of both are forced to

choose (e.g. MapReduce)

EECS 443 Advanced Operating Systems

8

MapReduce

  Two phases
–  Map phase

  Master node takes input, splits up the work, distributes to other nodes
(this process is repeated by worker nodes)

  Separate address spaces has no contention
  Shared address causes contention when distributing data

–  Reduce phase
  Master node takes the answers to sub-problems and combines them to

get output (repeated up the chain)
  Separate address space leads to soft page faults per core per page of

intermediate results
  Shared address space has no soft page faults as results are returned

  We want the best of both worlds

EECS 443 Advanced Operating Systems

9

Address Ranges

  Corey’s kernel abstraction of address
ranges
–  Range of virtual-to-physical

mappings
–  An application can allocate ranges,

insert mappings, and place an
address range at the desired location

–  If multiple cores’ address space uses
the same range, the space is shared

  Result
–  A core can update private address

space without contention
–  Space is only shared with cores that

manipulate the mappings

EECS 443 Advanced Operating Systems

10

Kernel Cores

  System calls in applications
– System calls are performed on same core as caller
– Must acquire locks for shared kernel data structures
– Can be costly

  Kernel abstraction for a kernel core
– A single core handles all kernel functions

 Manages hardware devices
 Execute system calls from other cores

– E.g. A Web service application with a core dedicated to
handling the network device

  Application decides if there will be performance
improvements

EECS 443 Advanced Operating Systems

11

Identifier Sharing

  Many kernel operations need to look up identifiers
in tables to find a pointer to kernel data
– File descriptors
– Process IDs

  The OS implementation determines the scope of
sharing of identifiers and tables (e.g. Unix)
– File descriptors shared between threads
– Process identifiers are generally global

EECS 443 Advanced Operating Systems

12

Shares

  Kernel share abstraction
– Allow applications to create lookup tables and control

sharing
 Each core starts with a unique, private share
 Sharing is done by creating a share and adding the share’s ID to

that core’s private root share (or a share within the root share)
 A root share is always private and does not need locking
 The shares that are reachable from the private share are the

identifies the core can use

– Contention may still be a problem but is avoidable
  Identifiers should always be placed in most limited sharing

– Applications must keep track of the location of
identifiers

EECS 443 Advanced Operating Systems

13

Back to File Descriptors

  Private file descriptors
– Place descriptors in its core private root share if it is

only used by one thread
  Shared file descriptors

– All cores sharing the descriptor create a share that
holds the descriptor

  Application can limit sharing and avoid
unnecessary contention between tables and
identifiers

EECS 443 Advanced Operating Systems

14

Performance (Address Ranges)

EECS 443 Advanced Operating Systems

15

Performance (Address Ranges)

EECS 443 Advanced Operating Systems

16

Performance (Kernel Cores)

EECS 443 Advanced Operating Systems

17

Performance (Kernel Cores)

EECS 443 Advanced Operating Systems

18

Performance (Shares)

EECS 443 Advanced Operating Systems

19

Performance (Shares)

EECS 443 Advanced Operating Systems

20

Performance (wri MapReduce)

EECS 443 Advanced Operating Systems

21

Performance (wri MapReduce)

EECS 443 Advanced Operating Systems

22

Performance (webd)

EECS 443 Advanced Operating Systems

23

Comments

  Corey is a prototype
– May not be a fair comparison to Linux
– Actual performance could be affected both ways

  Many of these concepts could be implemented
current Oses

  Paper is trying to argue that applications need to
control sharing for scaling purposes
– Exokernels may become more important as the number

of cores per chip continues to increase

EECS 443 Advanced Operating Systems

