Corey: An Operating System for Many Cores

S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterey,
L. Stein, M. Wu, Y. Dai, Y. Zhang, Z. Zhang
OSDI 2008

Presented by Zachary Bischof

NORTHWESTERN
UNIVERSITY

NORTHWESTERN Background

m Focus of chip manufactures has been number of
cores on a chip

— This leads to more sharing between cores

m Modern operating systems not optimized for
sharing between cores

— Sharing between cores may not be required

— Unnecessary sharing becomes a bottleneck for
performance

— Example: File descriptors

EECS 443 Advanced Operating Systems 2

NORTHWESTERN dup and close

m As number of cores increases, dup + close operations
decrease

m Shared table describing open files is causing the contention

m Standard is that all new file descriptors must be visible to all

threads 1T 1 T 1 1 1T 1 1° 1 1T 1T
3000 [~

2500 |~

2000

1500 [~

1000 -

1000s of dup + close per second

500 [~

[N N I L1
1 23 45 6 7 8 910111213 141516
Cores

EECS 443 Advanced Operating Systems 3

NORTHWESTERN -
© UNI\ng{SISTY Explanatlon

m How falsely shared cache
line hurts performance

— Inter-chip reads are slow

— Sharing requires accesses
to remote cache

DRAM

DRAM

3/6.77 121/1.27
LI []
14/4.44 50/3.27 > 201/0.86
L2] HEE
L3
255175 282/0.34)
273/1.46 \
S~ 327/133 (

DRAM

DRAM

EECS 443 Advanced Operating Systems

NORTHWESTERN -
© UNI\ng{SISTY Explanatlon

I | | | | | | | | | | |
n lock
S lock —&—

m Widely-shared locks , 200 oo
decrease performance

m Corey uses MCS locks
where each core spin
separately

1500 -

500 -

nanoseconds per acquire + release
Pr—
S
S
S
I

I A N N N S |

|] | | |
1 23 45 6 7 8 91011121314 1516
Cores

EECS 443 Advanced Operating Systems 5

WO RYIZSTIEN Proposed Solution: Corey

m Want to allow applications to scale well with an
increase in the number of cores

m Try something new (like an exokernel...)
— Provide abstractions that applications can control
— Applications can control sharing of OS data structures

m Corey’s new abstractions for the OS
— Address ranges
— Kernel cores
— Shares

EECS 443 Advanced Operating Systems

NORTHWESTERN Address Ranges

m Options for concurrency
— Threads

+ Typically shares a single address space between all threads

— Processes
<+ Typically has separate address spaces for each process

— Each only works for one sharing pattern

m Applications wanting a mix of both are forced to
choose (e.g. MapReduce)

EECS 443 Advanced Operating Systems 7

NORTHWESTERN MapReduce

m [wo phases
— Map phase

<+ Master node takes input, splits up the work, distributes to other nodes
(this process is repeated by worker nodes)

+ Separate address spaces has no contention
+ Shared address causes contention when distributing data
— Reduce phase

<+ Master node takes the answers to sub-problems and combines them to
get output (repeated up the chain)

+ Separate address space leads to soft page faults per core per page of
intermediate results

<+ Shared address space has no soft page faults as results are returned
m We want the best of both worlds

EECS 443 Advanced Operating Systems 8

NORTHWESTERN Address Ranges

m Corey’s kernel abstraction of address

ranges
— Range of virtual-to-physical
mappings
— An application can allocate ranges, (Corea j

I core b I

Insert mappings, and place an

root address range a

root address range b

address range at the desired location

— If multiple cores’ address space uses [stacka >< stack b

the same range, the space is shared

shared address range a

shared address range b

m Result

— A core can update private address
space without contention

— Space is only shared with cores that
manipulate the mappings

results a

EECS 443 Advanced Operating Systems

results b

(c) Two address spaces with shared result mappings.

NORTHWESTERN
UNIVERSITY Kernel Cores

m System calls in applications
— System calls are performed on same core as caller
— Must acquire locks for shared kernel data structures
— Can be costly

m Kernel abstraction for a kernel core

— A single core handles all kernel functions
+ Manages hardware devices
+ Execute system calls from other cores

— E.g. AWeb service application with a core dedicated to
handling the network device

m Application decides if there will be performance
iImprovements

EECS 443 Advanced Operating Systems 10

NORTHWESTERN - g n
UNIVERSITY Identifier Sharing

m Many kernel operations need to look up identifiers
in tables to find a pointer to kernel data

— File descriptors
— Process IDs
m The OS implementation determines the scope of
sharing of identifiers and tables (e.g. Unix)
— File descriptors shared between threads
— Process identifiers are generally global

EECS 443 Advanced Operating Systems 11

NORTHWESTERN
UNIVERSITY

m Kernel share abstraction

— Allow applications to create lookup tables and control
sharing
<+ Each core starts with a unique, private share

<+ Sharing is done by creating a share and adding the share’s ID to
that core’s private root share (or a share within the root share)

+ A root share is always private and does not need locking
+ The shares that are reachable from the private share are the
identifies the core can use
— Contention may still be a problem but is avoidable
+ |dentifiers should always be placed in most limited sharing

— Applications must keep track of the location of
identifiers

EECS 443 Advanced Operating Systems 12

ORI SN Back to File Descriptors

m Private file descriptors

— Place descriptors in its core private root share if it is
only used by one thread

m Shared file descriptors

— All cores sharing the descriptor create a share that
holds the descriptor

m Application can limit sharing and avoid
unnecessary contention between tables and
identifiers

EECS 443 Advanced Operating Systems 13

D90 g AN Performance (Address Ranges)

T T T T T T T T T T T T T 11
Linux single ——

140000 - Linux separate —— -

Corey address ranges —#&—

120000
100000
80000

60000 [~

cycles per page

40000 -

20000 [~

0 [| 1 |
1 23 456 7 8 910111213141516

Cores

(a) memclone
EECS 443 Advanced Operating Systems 14

NORTHWESTERN

UNIVERSITY Performance (Address Ranges)
1 1 1 1 1 1 1.1 1 T T T T T 1
Linux single
500 F Linux separate —4— .
Corey address ranges
2 400 |- -
c
o
2
= 300 [-
.g
= 200 [-
=
100 = 4 —
0 —! L1

| | | | | |
1 2 3 4 5 6 7 8 9 1011 1213 14 15 16
Cores

(b) mempass
EECS 443 Advanced Operating Systems 15

NORTHWESTERN Performance (Kernel Cores)
120000 T T T T T T T T T T T T T T1
100000 -

g
o
o
3 80000 [-
5
o
2" 60000 - -
g
0
2 40000 -
o
o
Q
20000 Polling —&—
Dedicate
0|||||||||1|1L1Pu’ﬁ||
1 2 3 4 5 6 7 8 91011121314 1516

Cores

(a) Throughput.

EECS 443 Advanced Operating Systems 16

NORTHWESTERN

UNIVERSITY Performance (Kernel Cores)
I D D D D I D N N R D
200 - -
=
S
5
= 150 |- -
S
2
«» 100 [~ _
2
E
g 50 _
Dedicate
0 I [[1 1 | LEHU%([|

| | | | | |
1 2 3 4 5 6 7 8 9 1011121314 1516
Cores

(b) L3 cache misses.

EECS 443 Advanced Operating Systems 17

ORI SN Performance (Shares)

| | [| [| [| | | | [| | |
8000 = Global share —&— B

Per—core shares

7000 -
6000 [~
5000 -
4000 -
3000 -
2000 -

1000s of add + del per second

1000

Ll
1 2 3 4 5 6 7 8 9 101112131415 16
Cores

(a) Throughput.

EECS 443 Advanced Operating Systems 18

NORTHWESTERN

UNIVERSITY Performance (Shares)
| [| [[| [[[[| [[| [[
10 Global share —&—
Per—core shares —2&—
5
=5 8
<
)
S
o
= 6
S
9
2 4
=
(e8!
—
2
0

1 2 3 4 5 6 7 8 9 1011121314 15 16
Cores

(b) L3 cache misses.

EECS 443 Advanced Operating Systems 19

ORI SN Performance (wri MapReduce)

50 -

40 -

30

Time (seconds)

I R
1 2 3 4 5 6 7 8 9 1011 1213 14 1516
Cores

(a) Corey and Linux performance.

EECS 443 Advanced Operating Systems 20

ORI SN Performance (wri MapReduce)

(a) Corey and Linux performance.

ot (] (N
N - W

[a—
)

Improvement (%)

L
1 2 3 4 5 6 7 8 9 1011121314 15 16
Cores

EECS 443 Advanced Operating Systems 21

NORTHWESTERN Performance (webd)

|
Random —&— ~
Locality —&—

60000 -

50000 [~

40000 -

30000

20000 [~

connections per second

10000 =

0 I I I
128 256 512 1024 2048 4096

File size (Kbytes, log scale)

EECS 443 Advanced Operating Systems 22

NORTHWESTERN
UNIVERSITY Comments

m Corey is a prototype
— May not be a fair comparison to Linux
— Actual performance could be affected both ways

m Many of these concepts could be implemented
current Oses

m Paper is trying to argue that applications need to
control sharing for scaling purposes

— Exokernels may become more important as the number
of cores per chip continues to increase

EECS 443 Advanced Operating Systems 23

