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NORTHWESTERN Background

m Focus of chip manufactures has been number of
cores on a chip

— This leads to more sharing between cores

m Modern operating systems not optimized for
sharing between cores

— Sharing between cores may not be required

— Unnecessary sharing becomes a bottleneck for
performance

— Example: File descriptors
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NORTHWESTERN dup and close

m As number of cores increases, dup + close operations
decrease

m Shared table describing open files is causing the contention

m Standard is that all new file descriptors must be visible to all
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NORTHWESTERN -
© UNI\ng{SISTY Explanatlon

m How falsely shared cache
line hurts performance

— Inter-chip reads are slow

— Sharing requires accesses
to remote cache
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NORTHWESTERN -
© UNI\ng{SISTY Explanatlon
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m Widely-shared locks , 200 oo
decrease performance

m Corey uses MCS locks
where each core spin
separately
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WO RYIZSTIEN Proposed Solution: Corey

m Want to allow applications to scale well with an
increase in the number of cores

m Try something new (like an exokernel...)
— Provide abstractions that applications can control
— Applications can control sharing of OS data structures

m Corey’s new abstractions for the OS
— Address ranges
— Kernel cores
— Shares
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NORTHWESTERN Address Ranges

m Options for concurrency
— Threads

+ Typically shares a single address space between all threads

— Processes
<+ Typically has separate address spaces for each process

— Each only works for one sharing pattern

m Applications wanting a mix of both are forced to
choose (e.g. MapReduce)
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NORTHWESTERN MapReduce

m [wo phases
— Map phase

<+ Master node takes input, splits up the work, distributes to other nodes
(this process is repeated by worker nodes)

+ Separate address spaces has no contention
+ Shared address causes contention when distributing data
— Reduce phase

<+ Master node takes the answers to sub-problems and combines them to
get output (repeated up the chain)

+ Separate address space leads to soft page faults per core per page of
intermediate results

<+ Shared address space has no soft page faults as results are returned
m We want the best of both worlds
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NORTHWESTERN Address Ranges

m Corey’s kernel abstraction of address

ranges
— Range of virtual-to-physical
mappings
— An application can allocate ranges, (Corea j

I core b I

Insert mappings, and place an

root address range a

root address range b

address range at the desired location

— If multiple cores’ address space uses [ stacka >< stack b

the same range, the space is shared

shared address range a

shared address range b

m Result

— A core can update private address
space without contention

— Space is only shared with cores that
manipulate the mappings

results a
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NORTHWESTERN
UNIVERSITY Kernel Cores

m System calls in applications
— System calls are performed on same core as caller
— Must acquire locks for shared kernel data structures
— Can be costly

m Kernel abstraction for a kernel core

— A single core handles all kernel functions
+ Manages hardware devices
+ Execute system calls from other cores

— E.g. AWeb service application with a core dedicated to
handling the network device

m Application decides if there will be performance
iImprovements
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NORTHWESTERN - g n
UNIVERSITY Identifier Sharing

m Many kernel operations need to look up identifiers
in tables to find a pointer to kernel data

— File descriptors
— Process IDs
m The OS implementation determines the scope of
sharing of identifiers and tables (e.g. Unix)
— File descriptors shared between threads
— Process identifiers are generally global
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NORTHWESTERN
UNIVERSITY

m Kernel share abstraction

— Allow applications to create lookup tables and control
sharing
<+ Each core starts with a unique, private share

<+ Sharing is done by creating a share and adding the share’s ID to
that core’s private root share (or a share within the root share)

+ A root share is always private and does not need locking
+ The shares that are reachable from the private share are the
identifies the core can use
— Contention may still be a problem but is avoidable
+ |dentifiers should always be placed in most limited sharing

— Applications must keep track of the location of
identifiers

EECS 443 Advanced Operating Systems 12



ORI SN Back to File Descriptors

m Private file descriptors

— Place descriptors in its core private root share if it is
only used by one thread

m Shared file descriptors

— All cores sharing the descriptor create a share that
holds the descriptor

m Application can limit sharing and avoid
unnecessary contention between tables and
identifiers
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D90 g AN Performance (Address Ranges)
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UNIVERSITY Performance (Address Ranges)
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NORTHWESTERN Performance (Kernel Cores)
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UNIVERSITY Performance (Kernel Cores)
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ORI SN Performance (Shares)
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UNIVERSITY Performance (Shares)
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ORI SN Performance (wri MapReduce)

50 -

40 -

30

Time (seconds)

I R
1 2 3 4 5 6 7 8 9 1011 1213 14 1516
Cores

(a) Corey and Linux performance.
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ORI SN Performance (wri MapReduce)

(a) Corey and Linux performance.
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NORTHWESTERN Performance (webd)
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NORTHWESTERN
UNIVERSITY Comments

m Corey is a prototype
— May not be a fair comparison to Linux
— Actual performance could be affected both ways

m Many of these concepts could be implemented
current Oses

m Paper is trying to argue that applications need to
control sharing for scaling purposes

— Exokernels may become more important as the number
of cores per chip continues to increase
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