Bugs as Deviant Behavior: A General Approach
to Inferring Errors in Systems Code

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and
Benfamin Chelf
SOSP 2001

Presented DE Zachaﬂ Bischof

NORTHWESTERN
UNIVERSITY

NO “'._];E[-.:."-:F':'T:E f} “{,F- RN Introduction

m Bugs are a problem

m Difficult to identify in systems code
— Rules are unclear
— Correctness is unknown

m Methods for identifying bugs:
— Type systems
— Specifications
— High-level compilation
— Dynamic invariant inference

EECS 443 - Advanced Operating Systems

NORTHWESTERN Deviant Behavior

m If correctness rules are known, we can check them
with an extended compiler
— Manually finding rules is difficult
— Want to extract it automatically, but how?

m Find incorrect behavior without knowing correct
behavior
— Cross check statements in code

— Identify contradiction
— Common behavior is probably correct behavior (hopefully)

EECS 443 - Advanced Operating Systems

NORTHWESTERN Beliefs

LUINIVERSITY

m Automatically generate beliefs
— Extract beliefs from the source code
— Compare beliefs in different sections

— Contradictions in beliefs
+ May be an error
<+ May be a coincidence
<+ May also identify sections of programmer confusion

m Two types of beliefs:
— MUST beliefs
— MAY beliefs

EECS 443 - Advanced Operating Systems

NORTHWESTERN Beliefs

LUINIVERSITY

m MUST beliefs
— Directly implied by code
— Check using internal consistency
— Contradiction of MUST beliefs directly implies an error

— Examples:
+x=alb;
— b is non-zero
< “ptr
— ptris not null

+ unlock(lck)
— Ick has been acquired

EECS 443 - Advanced Operating Systems

NORTHWESTERN Beliefs

LUINIVERSITY

m MAY beliefs

— Observed features, suggested by code
— May be a coincidence, treat as MUST beliefs

— E.g. ordering
+ ‘a();’ followed by ‘b();" MAY mean a() and b() must be paired
<+ Enclosure in locks may mean locking is required

— Lock followed by use of a and b, b may be a coincidence
— Separate coincidences from valid beliefs using probability

EECS 443 - Advanced Operating Systems

NORTHWESTERN Beliefs

LUINIVERSITY

m May Beliefs (cont'd)

— Use statistical analysis to filter out coincidences

z(n,e) = (efn — pﬂ}f\/(glu * (1 —po)/n

— Measures the amount of deviation in beliefs
— Error cases have some number of counter-examples

— Also useful to rank z(n, n — e)
+ Inversion shows beliefs that are almost never true
+ Such beliefs may also be errors

— Stop when the number of false pos is too high

EECS 443 - Advanced Operating Systems

NORTH "-TF STERN .
: LUMNIV r-:r:.—‘-:ﬁu‘ Null Pointers

m [hree possible beliefs for a pointer
— Null, not-null, or unknown

m Checker rules

— A dereference adds not-null to set of beliefs
+ Error if the previous belief set was null
— A comparison check implies two things

+ Before the comparison the belief is unknown

+ After the comparison (ptr == null), belief is null in true branch and
non-null in false branch

EECS 443 - Advanced Operating Systems

NORTHWESTERN Null Pointers

LUINIVERSITY

m Check-then-use (79 errors 26 false pos)
/* 2.4.1:drivers/isdn/avmbl/capidrv.c: */

1: if (card == NULL) {

23 printk (KERN_ERR "capidrv-jd: ... %d!\n",
3: card->contrnr, id):

4: }

m Use-then-check (102 bugs, 4 false)

/* 2.4.7: drivers/char/mxser.c */
struct mxser struct *info = tty->driver data;

unsigned flags;
if('tty || !'info->xmit buf)
return 0;

EECS 443 - Advanced Operating Systems

Spreading Beliefs, Lock Inference

1: lock 1; // Lock
2: int a, b; // Variables potentially
// protected by 1

3: woid foo() {

4 lock(1l); // Enter critical section

h: a=a+b; // MAY: a,b protected by 1

6: unlock(1l): // Exit critical section

T: b=b+ 1; // MUST: b not protected by 1
Bz)

9: void bar() {
10: lock(l);
11: a=a+1; // MAY: a protected by 1
13: unlock(1l):
13: }

14: void baz() {
16: a=a+1; // MAY: a protected by 1
16: unlock(1l);
17: b=b-1; // MUST: b not protected by 1
18: a=a/5; // MUST: a not protected by 1
19: }

EECS 443 - Advanced Operating Systems

Redundancy

m Contradiction/redundant checks(24 bugs, 10 false)

/* 2.4.7/drivers/video/tdfxfb.c */
fb info.regbase virt = ioremap nocache(...);
if('fb info.regbase virt)

return -ENXIO;
fb info.bufbase virt = ioremap nocache(...);
/* [META: meant fb info.bufbase virt!] */
if('fb info.regbase virt) {

iounmap (fb _info.regbase virt);

m Assume code should be useful

— Useless statements identify areas of confusion

/* 2.4.5-ac8/net/appletalk/aarp.c */
da.s node = sa.s node;
da.s net = da.s net;

EECS 443 - Advanced Operating Systems

NORTHWESTERN Security Holes

m Kernel pointers are safe, user pointers are not

— Any violation is a security hole

— How to find user pointers?
+ Use a similar analysis to finding null pointers

m “ptr implies a non-null pointer
— copyin(ptr)/copyout(ptr) suggests a user pointer
— Belief Iis propagated throughout code

m Found 24 security bugs in Linux, 18 in OpenBSD

EECS 443 - Advanced Operating Systems

NORTHWESTERN Security Holes Example

LUINIVERSITY

/* drivers/net/appletalk/ipddp.c:ipddp ioctl */
case SIOCADDIPDDPRT:
return ipddp create (rt);

case SIOCDELIPDDPRT:
return ipddp delete(rt);
case SIOFCINDIPDDPRT:
if (copy to user(rt, ipddp find route(rt),
sizeof (struct ipddp route)))
return -EFAULT;

m rt is treated as a user pointer, but is dereferenced
before it iIs checked

m Area of confusion for programmer
m 1:1 ratio of false positives

EECS 443 - Advanced Operating Systems

NORTHWESTERN Routine Failure

m Kernel code must check for failure

— Assumptions for checker:
<+ Assume all functions can fail

+ If the result of a function is ignored or used without checks,
“error”

<+ If the result of a function is checked before use, “checked”

— A high ratio of check to error messages implies checking
IS necessary

EECS 443 - Advanced Operating Systems

NORTHWESTERN
UNIVERSITY

The Worst Error...

/* ipc/shm.c:map_zero_setup */
if (IS_ERR(shp = seg_alloc(...)))
return PTR_ERR(shp);

Ve 2.4.U-test9:ipcfshm.c:newsag
NOTE: checking ’seg_alloc? =/

if (!(shp = seg_alloc(...)))
return -ENOMEM;

id = shm_addid(shp) ;

int ipc_addid(..., struct kern_ipc_perm* new)
new->cuid = new->uid = current->euid;
new->gid = new->cgid = current->egid;
ids->entries[id].p = new;

EECS 443 - Advanced Operating Systems

NORTHWESTERN Deallocation Errors

m Use-after-free errors can cause heavy damage

— Want to keep track of “free” calls

— Must identify undocumented free functions
+ Assume all functions contain free

foo(p); foo(p); foo(p); bar(p); bar(p); bar(p);
PEX PEX PEX p=null; p=null; *p=x;

— foo has fewer deviations than bar, bar has higher rank for
error detection
— Error may be the caused by an unexpected return path

— Found 23 free errors, 11 false pos

EECS 443 - Advanced Operating Systems

NORTHWESTERN Deallocation Errors

m Returning a freed pointer

/* fs/proc/generic.c:proc_symlink */
ent->data = kmalloc(...);
if (lent->data) {

kfree(ent) ;

goto out;

}

out:
return ent;

EECS 443 - Advanced Operating Systems

NORTHWESTERN

LUINIVERSITY

Deallocation Errors

/* drivers/block/cciss.c:ccliss loctl */
if (iocommand.Direction == XFEER WRITE) {
if (copy to user(...)) { B
cmd free (NULL, c);
if (buff !'= NULL) kfree (buff):
return(-EFAULT) ;

}
if (iocommand.Direction == XFER READ) ({

if (copy to user(...)) {
cmd free (NULL, c);
kfree (buff) ;

}
cmd free (NULL, c);

if (buff '= NULL) kfree (buff);

EECS 443 - Advanced Operating Systems

NORTHWESTERN Finding a-b Pairs

m a(); ... b(); implies a MAY belief that a() must
always be followed by b()

m Assume all a-b sequences are valid

— Note: use latent specifications and prefiltering to restrict
to likely pairs

m Scan for all function calls
— “check” for each a() ... b() sequence
— “error” for all lone a() calls

m Rank errors
m Found 23 errors and 11 false positives

EECS 443 - Advanced Operating Systems

NORTHWESTERN Finding a-b Pairs

drivers/sound/trident.c:trident_release:
lock_kernel();

card = state->card;

dmabuf = &state->dmabuf;
VALIDATE_STATE(state) ;

m Kernel lock not always released on some error
paths within VALIDATE STATE(state);

EECS 443 - Advanced Operating Systems

s
-

NORTHWESTERN Finding a-b Pairs

f* drivers/sound/esssolol.c:s0lol_midi_release */
static int solol_midi_release(...) {

lock_kernel();
if (file->f_mode k& FMODE_WRITE) {
add_wait_quene(&s->midi.owait, kwait);
for (;;) 1
__set_current_state (TASK_INTERRUPTIELE) ;
spin_lock_irqgsave (&s->lock, flags);
count = s-rmidi.ocnt;
spin_unlock_irqrestore(ks->lock, flags);

if (file->f_flags & O_NONBLOCK) {
remove_wait_queue(...);
set_current_state (TASK_RUNNING) ;
f* did not release lock! =/
return -EBUSY:;

}

unlock_kernel() ;
return 0;

m Possible to return without releasing Kernel lock

EECS 443 - Advanced Operating Systems

NORTHWESTERN
UNIVERSITY : Summa ry

m Extract code beliefs, find errors without knowing the
truth
— MUST belief contradictions are errors

— MAY beliefs should be treated as MUST beliefs and then
ranked by their confidence rating

m Flag areas with redundancy/useless code

— High chance of error
+ Could be a typo
+ Programmer confusion could mean errors are nearby

EECS 443 - Advanced Operating Systems

