
Jonathan Ledlie, Paul Gardner, and Margo Seltzer of

Harvard University and Aelitis

Presented by Nikhil R. Sethi

Outline

 What are Network Coordinates

 Applications

 Background

 Characteristics

 Problems

 Solutions

 Conclusion

Applications

 Network coordinates provide a

mechanism for selecting and placing

servers efficiently in a large distributed

system.

 Performance of Internet Applications

 Distributed hash tables, web caches, and

overlay networks.

 All require accurate latency estimation

between participants.

Background
 Current Methods

 Proxy measurement

 Landmark binning

 Decentralized network embeddings

 Each node has a “network coordinate”
 The metric distance between two coordinates in the abstract

space predicts real world latencies.

 Current Problems
 Inaccuracy and fragility in presence of triangle inequality

violations

 Use Azureus BitTorrent Network

 Million-plus node network

Naysayers

 Debate is turning into a “religious war”

 Naysayers state that coordinate

maintenance is too expensive

 Prediction accuracy is worse that direct

measurement

 Unproven idea and unlikely to work in

practice

Supporters

 Accuracies are reasonable 8-15%

 Maintenance can be built on top of

existing application communication.

(piggyback)

Azureus

 BitTorrent client

 Initial seeder, new seeders, tracker, and

peers.

 Use of network coordinates to:

 Optimize DHT traversal

 Help clients choose between exchanging

with one client and another.

 Too many clients with pieces to

exchange.

More applications

 More complex applications

 A web cache can be placed at the centroid

of a set of web clients that want access to

same data.

 Server hosting a distributed game can be

hosted at a machine close to the centroid of

the players’ coordinates leading to fair

access times.

Vivaldi
 The Vivaldi algorithm

 calculates coordinates as a solution to a

spring relaxation problem.

 Measured latencies are modeled as

extensions of springs between mass less

bodies

 Minimum error is found at low-energy state

of the spring-system.

1. Sample confidence

2. Relative Error

4. Exponentially weighted moving

average

5. Coordinate

6. Coordinate updated.

Height

 Height

 An alternative to pure Euclidean distance

metric

 Distance between nodes is measured as

their Euclidean distance plus a height above

the hypercube that models latency penalty

of network links i.e. DSL lines

Neighbor Set

 Each node successively refines its

coordinate through periodic updates with

other nodes in its neighbor set.

 Information used to maintain this is

piggybacked onto existing messages,

resulting in no additional overhead (28

bytes per message)

 Algorithm needs to function passively.

Latencies in the Wild

 Previous studies use matrices of inter-
node latencies.

 Infeasible for large networks i.e. Azureus

 Three instruments for Azureus

 Matrix of a subset of network to act as
“ground truth”

 Clients running on PlanetLab that log every
update

 Statistics injected into Azureus code which
were collected by standard clients.

Collection

 PlanetLab

 283 nodes running for 24 days collecting
9.5*10^7 latency measurements to 156,658
Azureus nodes.

 Process

 Summarized each edge with median round
trip time

 Discarded edges with fewer than 4 samples

 Resulted in 249x2902 matrix with 91%
entries containing latency values.

Characteristics

 Round trip times

 Violation of triangle inequality

 Intrinsic dimensionality

Round Trip Times

 Spread

 Azureus round trip times spread across four

orders-of magnitude

 MITKing data set spreads across three

 In practice the error between nodes whose

distance is near the middle of the latency

distribution tends to be the lowest

 This wide spread is a warning sign that

Azureus will have higher error

Round Trip Times

Violations of the Triangle

Inequality

 No violations + significant number of

dimensions = no error

 Tang/Crovella method normalizes

severity of each violation so system can

be viewed as a whole

 For each node pair we find the shortest

path between two that pass through a

third node.

Tang/Crovella Triangle Inequality

Test

In all three data sets, over half of node pairs fail the test, because there is a third node

between the pair that produces a shorter path. A large fraction of these violating pairs

have paths that are significantly faster.

This too foreshadows high embedding error in Azureus data set.

85% failed

68%

83%

Dimensionality

 Network coordinates less useful if a

large number of dimensions are needed

to capture inter-node latencies.

 Principal Component Analysis (PCA)

 Technique to hint at number of dimensions

required to encompass this information.

 Requires full matrix, so missing values

needed to be filled in Azureus (9%)

Dimensionality

Scree plot shows how much variance each new singular value is capturing, which shows

inherent dimensionality of underlying data set. At point where magnitude of singular

values becomes zero or close to zero, three dimensions are necessary.

Create synthetic 5/10 dimension systems with 250 random points each, notice the drops

after 5 and 10 for those data sets. 4-5 dimensions is appropriate for Internet-scale

network coordinates.

Intercontinental Latency

Distributions

 More concrete way of examining

flatness.

 Euclidean space for the globe?

 Spherical coordinates have high error.

 The world is flat.

 Traffic flows from Asia and Europe through

North America

Intercontinental…

Mapped IP addresses to countries and mapped countries to continents. No messages

from Asia to Europe were faster than those from Asia to North America. Same in

opposite direction.

All paths between Asia and Europe appear to travel in a line across two oceans.

Using Euclidean metric is sufficient.

Network coordinates in Azureus are fundamentally embeddable, however its round trip

time distribution and triangle inequality violations suggest that large error will be

exhibited, despite the few dimensions needed.

Techniques to improve network

coordinate system

 Latency and Update Filters

 Neighbor Decay

 Measuring Coordinate Systems

 Live Coordinates

Latency and Update Filters

 Two simple filters
 Latency filter

○ Takes stream of latency measurements from a remote
node and turns these into an expected latency value.

○ Anomalous measurements affecting the values. Measure
of round-trip would be 1000ms when actual
measurements was 200ms.

○ Also expected value could not be fixed at a single value.
“plateau shifts”

 Update Filter
○ Focuses on making coordinates more stable not more

accurate

○ When a coordinate has changed enough to cause an
application-level reaction.

○ Filter differentiated between constantly evolving system-
level coordinates and higher application-level coordinates.

Neighbor Decay - Problem

 Network coordinates should function
passively, that is without generating any
extra traffic.
 In case of Azureus they had no control over the

selection of nodes talked to, due to the
piggybacking nature of information for a
coordinate update.

 Thus, nodes did not have a fixed set of
neighbors with expectations for regular
exchanges. Some nodes would receive 1-3
updates from a remote node and then never
hear from that node again.

Neighbor Decay - Solution

 Instead of refining our coordinate with
respect to the remote node from where
new information is retrieved, it is refined
with respect to all the nodes which have
recently received an update.

 Normalizing

 scale each neighbor by its age i.e. older
information receives less weight. This allows
nodes that are infrequent to have a lasting,
smooth effect on our coordinate.

Neighbor Decay – Benefits

 Node coordinates do not jump to

locations that have high error with

respect to other members of neighbor

set

 Acts to increase the effective size of the

neighbor set, which can lead to higher

global accuracy.

Measuring Coordinate Systems

 Relative Error
 Difference between the expected and actual latencies between two

nodes.

 Global, continuous, and neighbor
○ Neighbor error is used as a proxy for global error when live nodes

are performing computations, with large number of neighbors =
approx global error.

 Stability
 Important when a coordinate change triggers application activity.

 Relative Rank Loss (RRL)
 Can capture application accuracy better than relative error.

 Determines how well a network coordinate scheme preserves the
relative ordering of all pairs of neighbors.

 Relative Application –Level Penalty (RALP)
 The cumulative penalty for using network coordinates.

 Using network coordinates for client selection instead of searching
through all nodes.

Live Coordinates

 PlanetLab

 Ran instrumented Azureus clients over three
time periods.

 Crawled approx 10,000 Azureus clients that
internally tracked performance of their
coordinates using stats inserted in Azuerus
code.

○ Included address of remote nodes, remote
and local coordinates, perceived latencies to
remote nodes, and timestamps. From this
RE, stability, RRL, RALP were determined.

First Snapshot – 2D+H

 Two Dimensions + Height

 None of the filtering techniques

implemented.

Second Snapshot – 5D

 Then added 3 dimensions

 Dropped height

 Added filtering techniques

 Removing height was fatal.

Third Snapshot – 4D+H

 4 dimensions + height

 All filtering techniques

 220 PlanetLab nodes

 Lasted for 3 days

 Logged updates ~40,000 Azureus

nodes.

2D+H vs 5D
In all cases 4D+H was more accurate

and stable.

43% improvement in relative error.

4 orders improvement in stability.

First change was 2D+H to 5D

Removal of height damaged accuracy

more than the filters aided it.

Given that 2D is sufficient not

surprising that addition of 3D did not

improve accuracy.

Although 5D is more stable, due to

latency filters preventing anomalous

measurements reaching updating

algorithm.

5D vs 4D+H
Introduction of neighbor decay and re-

introduction of height created much

more accurate coordinate space.

Neighbor decay allowed nodes to

triangulate their coordinates.

Live vs. Simulated
Comparison of statistics from live

nodes to simulated nodes show

that accuracy can be improved by

45%

Barriers to Accuracy

 Churn

 Drift

 Corruption and Versioning

 Intrinsic Error

 Latency Variance

Churn

 Given an existing, stable system, how
quickly can a new node find a stable,
accurate coordinate.

 Three solutions
 Nodes could perform a rapid initial triangulation

process before shifting to a lower update rate.
Passivity is an issue

 “greedy optimization” instead of stepping once
through update, nodes repeat until a local min
has been reached

 Instead of starting from scratch when restarting
a client, have it begin where it left off.

Churn
78% of nodes stayed in

system for less than one

hour. Difficult to incorporate

newcomers with

coordinates starting at

origin.

Nodes that have been in

system for more than one

hour have more accurate

coordinates. Suggests that

churn hurts convergence.

Drift

 Monitoring over several months

revealed that coordinates migrated in a

fairly constant direction. Not random.

 Absolute coordinates do matter.

 Applications tend to make assumptions

on max distance away from “true” origin.

 Cause of origin migration is driven by

compressing the globe into a small

number of dimensions.

Drift Solution

 Straw-man Solution

 Continuously re-define origin as centroid of

system.

 Requires accurate statistical sampling of

coordinate distribution.

 Gravity

 Apply a polynomial increasing gravity to

coordinates as they become farther away

from “true” origin.

Drift

Corruption and Versioning

 Users can choose when to upgrade

 Causes problem when all users not running

same version of code. (13%)

 Malicious behavior

 Trivial to install client that respond with

random values like the MPAA

Intrinsic Error

 Violations of triangle inequality occur
frequently on Azureus

 Height manages violations that access-
link latency.

 Found that by removing a small number
of the worst violators causes a large
improvement in global accuracy.

 Not only do they damage their own
coordinates, damage reverberates
through system.

Intrinsic Error

Removing worst .5% of nodes leads to 20% improvement in accuracy.

Latency Variance

 If variances are very large what does it

mean to predict the latency from one

node to another?

 Latency filters

Latency Variations

Related Work

 Clustering

 Latency prediction through clustering nodes

based on:

○ IP address prefixes

○ Automatic formation through cluster size and

amenability.

○ Nodes that are similar distances away from

fixed landmarks place themselves in same

cluster.

Conclusion

 Network coordinates in the wild to

behave differently than tame ones in

PlanetLab

 HOWEVER.

 These wild coordinates can be tamed…

 Through latency filters, update filters,

neighbor decay, coordinate memory, gravity,

and violator exclusion

