
Nathan Matsuda
CS443
2/5/07

1. Paper title and its author(s).

Efficient Replica Maintenance for Distributed Storage Systems
Byung-Gon Chun,† Frank Dabek,? Andreas Haeberlen,‡ Emil Sit,? Hakim 
Weatherspoon,†
M. Frans Kaashoek,? John Kubiatowicz,† and Robert Morris?

2. Brief one-line summary.

The paper describes a strategy for maintaining durable replicas of data 
across a wide internet storage system while reducing the overhead of 
bandwidth used in moving replicating data.

3. A paragraph of the most important ideas: perhaps a combination of 
their motivations, observations, interesting parts of the design, or 
clever parts of their implementation.

The overall goal of the paper is to develop a protocol, given an average 
failure rate and amount of burstiness for failures, that will maintain 
durable copies of immutable data. That is, there must exist a copy of 
the data somewhere on the system, even if the storage node is powered 
down or otherwise disconnected. To do this, copies must be made faster 
than their hosting nodes fail. Other implementations incur more than two 
times overhead compared to a theoretical optimum system that replicates 
exactly when needed. This overhead is incurred by mistaking transient 
failures, where a node disconnects or reboots, but the data is not lost, 
for an actual failure.
Using the planetLab data, the authors show that with the bandwidth cap 
imposed by planetLab, one nodes data can be replicated roughly three 
times per year. As a result, if all three nodes containing that data 
fail in a year, the data will be lost, because replication cannot keep 
up. However, it is unlikely that this would happen – this would be an 
example of a burst. The authors point out that on a wide internet 
storage system, failures can be assumed to be unconnected given 
geographical and hardware differences. A replication rate has to be 
chosen to take into account the bandwidth limitations and the maximum 
concurrent failure rate (burstiness).
A transient failure cannot be distinguished from an actual failure, so 
replication procedures cannot be altered to fit both types. Instead, the 
authors propose that the data on transiently-failed nodes, when they 
come back online, will be counted as a normal replica, instead of being 
forgotten. The system then must track the location of all nodes 
containing a replica, even if those nodes are offline. When a node goes 
offline a replica is made just in case it was a true failure. If the 
node comes back, then there is one more replica so the priority of 
making replicas for that data goes down. Data with more replicas than 
necessary have low priority and data with not enough replicas to ensure 
durability are given high priority. The system uses a DHT where 
returning nodes will pop up at the same virtual location, eliminating 
the need for explicit tracking of data replicas. However, they note that 
the monitoring overhead for the DHT can limit scalability. As a 
countermeasure, Carbonite nodes keeps track of some information about 
other local nodes that don’t have copy of their data so that when a 
failure occurs, suitable hosts for a new replica are at hand without the 
cost of rediscovering these nodes.



The authors compare Carbonite to several other implementations. The test 
used planetLab node failure traces to drive an event-based simulation. 
Synthetic traces were also used for higher failure probabilities. It 
performs better in simulation than systems that use simpler methods for 
dealing with transient failures (like timeouts – if a node is not 
available for a certain period, it must have failed), but does not 
perform better than systems that actually know when a node has failed or 
not (Oracle). Other systems are mentioned in the related work, but the 
authors use them to point out how reintegrating replicas from transient 
failures has not been explored and eliminates the need for birth-death 
rate estimations. This paper also only looks at immutable data, so other 
back systems are not applicable because they deal with constantly 
changing data. Some other systems are designed for large-scale 
correlated failures, which Carbonite is not concerned with.

4. A paragraph of the largest flaws; maybe an experiment was poorly 
designed or the main idea had a narrow scope or applicability. Being 
able to assess weaknesses as well as strengths is an important skill for 
this course and beyond.

While the authors’ tests do compare against other systems, no tests are 
done on the actual planetLab test bed. Moreover, the simulations 
themselves are the same size as planetLab, so there is no indication on 
how well the scheme scales. The authors themselves note that some of the 
implementation details, particularly surrounding the use of DHTs, might 
pose problems with large scales.
The analysis data shows no indication about how burstiness and failure 
rate actually affect the percentage of data lost. This seems like an 
incredibly important set of numbers to evaluate if this system works 
well. It would have been good to include graphs showing percent data 
lost v.s. different average and burst failure rates.

5. A last paragraph where you state the relevance of the ideas today, 
potential future research suggested by the article, etc.

As the authors note in their conclusion, the low cost and ready 
availability of both storage hardware and internet connections make it 
seem like wide-scale storage is going to be increasingly useful. 
However, until systems are developed that can ensure that user data will 
not be lost while using bandwidth effectively, widespread use of 
internet storage systems may not catch on.


